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Abstract

Advances in microscopy instruments and image processing algorithms have led to an increas-

ing number of cryo-EM maps. However, building accurate models for the EM maps at 3-5 Å

resolution remains a challenging and time-consuming process. With the rapid growth of de-

posited EM maps, there is an increasing gap between the maps and reconstructed/modeled 3-

dimensional (3D) structures. Therefore, automatic reconstruction of atomic-accuracy full-atom

structures from EM maps is pressingly needed. Here, we present a semi-automatic de novo struc-

ture determination method using a deep learning-based framework, named as DeepMM, which

builds atomic-accuracy all-atom models from cryo-EM maps at near-atomic resolution. In our

method, the main-chain and Cα positions as well as their amino acid and secondary structure

types are predicted in the EM map using Densely Connected Convolutional Networks. DeepMM

was extensively validated on 40 simulated maps at 5 Å resolution and 30 experimental maps at

2.6-4.8 Å resolution as well as an EMDB-wide data set of 2931 experimental maps at 2.6-4.9

Å resolution, and compared with state-of-the-art algorithms including RosettaES, MAINMAST,

and Phenix. Overall, our DeepMM algorithm obtained a significant improvement over existing

methods in terms of both accuracy and coverage in building full-length protein structures on all

test sets, demonstrating the efficacy and general applicability of DeepMM.

Availability: https://github.com/JiahuaHe/DeepMM
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1 Introduction

Cryo-electron microscopy (cryo-EM) has now become a widely used technique for structure deter-

mination of macromolecular structures in the recent decade1–4. Advances in microscopy instruments

and image processing algorithms have led to the rapid increase in the number of solved EM maps1–3.

The ‘resolution revolution’ in cryo-EM has paved a way for the determination of high-resolution

structures of previously intractable biological systems5–16. According to the statistics of the Electron

Microscopy Data Bank (EMDB)17, there were 2435 maps deposited in 2019, which are almost 4

times the 640 maps released in 2015.

With the rapid growth of deposited EM maps, there is an increasing gap between the maps and

reconstructed/modeled 3-dimensional (3D) structures. As of April 1, 2020, there were 10560 EMDB

maps, but only 4805 associated structures were deposited in the Protein Data Bank (PDB)18. For those

maps determined at near-atomic resolution (3.0∼5.0 Å), it is difficult to build high-resolution models

with conventional software designed for X-ray crystallography. In view of the fact that near-atomic

resolution maps take up the majority of current and henceforth released maps17, tools, which can re-

construct structures de novo from EM maps without using known structures as templates19, are press-

ingly needed. As such, some algorithms like EM-fold20, Gorgon21, Rosetta22, 23, Pathwalking24–26,

Phenix27–29, and MAINMAST30, 31, have been recently presented for constructing and/or assembling

structure fragments from Cryo-EM maps.

Despite the present progress in de novo structure building for cryo-EM maps, there are various

limitations in current approaches. They can either only build structural fragments20, 21, 28 or have low

accuracy in terms coverage and/or sequence reproduction23, 24, 30. It remains challenging to automat-

ically build an accurate all-atom structure from the EM maps at near-atomic resolution. Recently,

machine learning has been actively applied in structure determination for EM maps, such as single

particle picking32, tomogram annotation33, secondary structure prediction34, and backbone tracing35.

However, applying deep learning to build full-length protein structures for near-atomic resolution EM

maps remains a challenging work.

Here, we have developed a semi-automatic de novo atomic-accuracy structure reconstruction

method for EM maps at near-atomic resolution through Densely Connected Convolutional Networks
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(DenseNets) using a deep learning-based framework, named DeepMM. Instead of tracing the protein

main-chain on the raw EM density map, DeepMM first predicted the probability of main-chain atoms

(N, C, and Cα) and Cα positions near each grid point using one DenseNet36. Then, the method traced

the main-chain according to the predicted main-chain probability map. The amino acid and secondary

structure types were predicted by a second DenseNet. Finally, the protein sequence was aligned to

the main-chain according to the predicted Cα probabilities, amino acid types, and secondary structure

types for all-atom structure building.

2 Methods

2.1 Workflow of DeepMM

The workflow of DeepMM is illustrated in Figure 1a. Specifically, staring from a cryo-EM map and

the target protein sequence, DeepMM first standardizes the order of axis, and interpolates grid interval

to 1.0 Å. Then, DeepMM cuts the entire map into small voxels of size 11Å×11Å×11Å. Afterwards,

one DenseNet (say DenseNet A) is used to predict the main-chain and Cα probability on each of

the voxels. All the predicted probability values form a 3D probability map. Next, possible main-

chain paths are generated in the predicted main-chain probability map using a main-chain tracing

algorithm30. The Cα probability values of main-chain points are interpolated from the predicted 3D

Cα probability map. Afterwards, the amino acid and secondary structure types are predicted for each

main-chain point through the second DenseNet (say DenseNet B). With the predicted Cα probability,

amino acid type, and secondary structure type for each main-chain point, the target protein sequence

is then aligned to the main-chain paths based on the Smith-Waterman dynamic programming (DP)

algorithm37. The resulted multiple Cα models are ranked by their alignment scores. Finally, the

all-atom structures are constructed from the top Cα models using the ctrip program in the Jackal

modeling package38, 39 and refined by an energy minimization using Amber40.

2.2 Training the DenseNets of DeepMM

Two Densely Connected Convolutional Networks (DenseNets) are embedded into our DeepMM algo-

rithm. Figure 1b illustrates the architecture of the networks. DenseNet is a feed-forward multi-layer
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network which uses additional paths between earlier and later layers in a dense block. DenseNets have

several compelling advantages. They alleviate the vanishing-gradient problem, strengthen feature

propagation, encourage feature reuse, and substantially reduce the number of parameters36. DeepMM

also employs a hard parameter-sharing multi-task learning method, which can greatly reduces the risk

of overfitting41. The first network (i.e. DenseNet A) is used to simultaneously predict the main-chain

probability and Cα probability of a grid point. The second network (i.e. DenseNet B) is used to pre-

dict the amino acid type and secondary structure type of a main-chain local dense point (LDP). The

input for the DenseNet A are voxels of size 11Å × 11Å × 11Å. The second network (DenseNet B)

takes the voxels of size 10Å × 10Å × 10Å as input because main-chain points are not always on the

integer grid after mean shift. For each voxel, the density values are normalized to the range of [0, 1]

according to the maximum and minimum density values in the voxel. 3D convolutions and 3D pool-

ing layers are used instead of their 2D counterparts used in traditional image processing because the

density maps have three dimensions. Several dense blocks are used in both networks, each of which

consists of eight densely connected layers. For DenseNet A, the first two dense blocks are shared

by both tasks, whereas for DenseNet B, only one shared block is adopted. After the shared blocks,

each task employs two task-specific blocks and gives the final prediction. The details of network

architecture are provided in Supplementary Table 1.

All the training parameters and procedure used for simulated EM maps are essentially the same

to the parameters and procedure used for experimental EM maps unless otherwise specified.

For DenseNet A, all the grid points above a density value D0 were used for training, where D0

was set to 1.0 for simulated maps at 5.0 Å resolution. For experimental maps, D0 was set to 1/2 of its

recommended contour level. The labels (main-chain probability and Cα probability) of a grid point ~a

were calculated as follows:

P
~X
~a = min{e

−
‖~a− ~X‖2

r2
0 , ∀ ~X ∈ ‖~a− ~X‖ < rcut} (1)

where X stands for the N, C, or Cα atoms. The r0 is the radius at which the probability drop to 1/e.

If no atom is within rcut of a grid point, the corresponding probability is set to 0. A total of 512 voxels

were trained in one batch and 30 epochs were trained for the whole data set. The Adam optimizer

with an initial learning rate of 0.001 was used to minimize the mean absolute error (MAE). Learning
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rate decay was adopted, where the learning rate was reduced to 1/10 of the current value after every

10 epochs. To avoid over-fitting, the weight decay parameter of Adam optimizer was set to 1e-6 as

the L2 regularization.

For DenseNet B, one point was randomly sampled within 1.0 Å for every main-chain atom in the

training set. The corresponding amino acid type and second structure type marked by STRIDE42 were

assigned to each point. Twenty types of amino acids were grouped into four classes according to their

sizes, shapes and distributions in their EM density maps43, as illustrated in Figure 2d. Specifically,

GLY, ALA, SER, CYS, VAL, THR, ILE and PRO are grouped as Class I. LEU, ASP, ASN, GLU,

GLN and MET are grouped as Class II. LYS and ARG are grouped as Class III. HIS, PHE, TYR

and TRP are grouped as Class IV. Residues that have structure codes of H, G, or I by STRIDE were

labelled as “Helix”, those with codes of B/b or E were labelled as “Sheet”, and the other residues

were labelled as “Coil”. All the training parameters were identical to those for DenseNet A except

for using CrossEntropyLoss as loss function.

2.3 Tracing the main-chain path

The main-chain tracing algorithm in MAINMAST30 was used to trace the main-chain path in our

predicted main-chain probability map. In brief, local dense points (LDPs) are first identified using

the mean shift algorithm, which iteratively shifts the initial grid points towards the local highest

probability by computing the weighted average of probability values. Then, the shifted points that are

within a threshold distance of 0.5 Å are clustered, and the point with the highest probability in the

cluster is chosen as the representative, called LDP. The next step is to connect LDPs into a minimum

spanning tree (MST) and iteratively refine the tree structure with a Tabu search method. After multiple

steps of Tabu search, the longest path of the refined tree is traced as the main-chain path. The details

of the algorithm can be found in the MAINMAST study30.

2.4 Aligning target sequence to main-chain path

The Smith-Waterman dynamic programming (DP) algorithm37 is used to align the target sequence to

the predicted main-chain path. The predicted Cα probability value, amino acid type, and secondary

structure type are assigned to each point of the main-chain. Instead of using 20 amino acid types,
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amino acids are grouped into four classes according to their sizes, shapes, and distributions in EM

density maps (Figure 2d). Secondary structures are categorized into three types of Helix, Sheet,

and Coil. The match between the target sequence and main-chain path is evaluated by two scoring

matrices for amino acid and secondary structure, respectively (Figure 2b). Namely, a target residue

is more likely to be aligned to a main-chain point with the same amino acid type, the same secondary

structure type, and a higher Cα probability, and vice versa. The detailed alignment protocol is shown

in Figures 2a, b and c. The n residues {Ai(i = 1, ...n)} in the protein are aligned to m LDPs

{Lj(j = 1, ...m)} in the main-chain path. The matching score M(i, j) for a pair of Ai and Lj is

computed as follows.

M(i, j) = wAAMAA(TAA(Ai), TAA(Lj)) + wSSMSS(TSS(Ai), TSS(Lj)) (2)

where MAA and MAA are the scoring matrices for amino acid and secondary structure matching43, 44,

respectively. For a residue Ai, the amino acid type is one of the four amino acid classes (TAA(Ai) =

1, 2, 3, 4). The predicted amino acid type for an LDP Lj is also one of the four amino acid classes

(TAA(Li) = 1, 2, 3, 4). Similarly, the secondary structure matching score is calculated using the sec-

ondary structure type predicted from the sequence (TSS(Ai) = 1, 2, 3) by SPIDER245 and secondary

structure type predicted on LDPs (TSS(Li) = 1, 2, 3). The scoring matrices MAA and MSS used in

the alignment are shown in Figure 2b. The wAA and wSS are the weights for corresponding matching

scores and set to 1.0 and 0.5, respectively. With the calculated matching score M(i, j), an alignment

is calculated with the follow rule to form a DP matrix, F , as follows.

F (i, j) = max























F (i− 1, j) + gap

F (i− 1, j − 1)− wCα−Cα|dstd − d|+ wCαPCα(j) +M(i, j)

F (i, j − 1)

(3)

where gap is the gap penalty for unassigned residues in the protein sequence. To ensure a full-length

structure reconstruction, gap is set to −10000.0 so as to forbid skipped residues. The |dstd − d| is the

penalty score for Cα-Cα distance, where dstd is the standard Cα-Cα distance and d is the distance

between LDP Lj and the last aligned LDP. The PCα(j) is the predicted Cα probability for LDP

Lj . The wCα−Cα and wCα are the weights for the corresponding scores. Here, wCα is set to 1.6, and

wCα−Cα is set to 1.0, 0.7, and 0.8 for “Helix”, “Sheet”, and “Coil”, respectively. For each combination
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of parameters in the main-chain tracing procedure, 160 Cα models are generated. Finally, all the

generated Cα models are ranked by their alignment scores.

2.5 Parameter settings of DeepMM

The parameters of mean-shift, MST construction, and Tabu search are set to be the same to those

in MAINMAST30, unless otherwise specified. DeepMM employs several parameter combinations to

generate multiple Cα models for one EM map. For each combination of parameters, 10 trajectories of

Tabu search are carried out, yielding 10 main-chain paths. Since DeepMM starts from the main-chain

probability map, fewer parameter combinations are needed to reconstruct reliable 3D structures. For

both simulated and experimental maps, the thresholds of probability (Φthr) and normalized probability

(θthr) are both set to 0. For the 40 simulated maps, only one parameter combination is adopted.

Specifically, the maximum number of Tabu search steps (Nround) is set to 100, the sphere radius of

local MST (rlocal) is set to 5.0 Å, and the constraint for the length (dkeep) is set to 0.5 Å. For the

30 experimental maps, we employ the following 27 combinations of parameters: the sphere radius

of local MST (rlocal=5.0, 7.5, 10.0 Å), the edge weight threshold (dkeep=0.5, 1.0, 1.5 Å), and the

maximum number of the Tabu search steps (Nround=2500, 5000, 7500). For the extended EMDB-

wide test set of 2931 maps, we employ fewer combinations of parameters so as to save computational

cost: the edge weight threshold (dkeep=0.5, 1.0 Å) and the maximum number of the Tabu search steps

(Nround=2500, 5000). The sphere radius of local MST (rlocal) is set to 10 Å. For each of the generated

main-chain path, 16 Cα models are generated using 8 different standard Cα-Cα distances (dstd=3.1,

3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 Å) on two sequence directions. Namely, 160 models (16 models for

each of the 10 trajectories) are constructed for each parameter combination. The Cα models are

ranked by their alignment scores and then an RMSD cutoff of 5 Å is used to remove the one with

lower alignment score in two similar structures. Finally, the top 10 scored protein Cα models are

selected to build the all-atom structures.
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2.6 Datasets used

2.6.1 Training sets

Two data sets, simulated EM map set and experimental EM map set, were used to train our DeepMM

method for simulated maps and experimental maps, respectively.

For simulated EM maps, 2000 representative structures for different superfamilies in the SCOPe

database46 were taken from Emap2sec34 as training set. Those structures were removed from the

training set if they have a TM-score47 of over 0.5 with any structure in the test set. To save the com-

putational cost, only 100 randomly selected structures from the training set were retained. Next, we

used the e2pdb2mrc.py program from the EMAN2 package (version 2.11)48 to generate the simulated

EM maps at 5.0 Å resolution and 1.0 Å grid interval for each structure in training and test set. The

training SCOPe entries used in this study were listed in Supplementary Table 5.

For experimental EM maps, all the EM density maps at 2-5 Å resolution that have associated PDB

models were downloaded from the EMDB. As of December 26, 2019, 2546 EM maps were collected.

Any PDB structure and its corresponding EM map that met the following criteria were removed:

(i) including nucleic acids, (ii) missing side-chain atoms, (iii) including “HETATM” residues, (iv)

including “UNK” residues, (v) including more than 1 subunit (MODEL), and (vi) including less than

50 or more than 300 residues. Then, 1588 chains from the remaining 361 experimental EM maps were

clustered with 50% sequence identity using CD-HIT49, yielding a total of 1340 chains. To ensure a

valid evaluation, chains were removed from training set if they have over 30% sequence identity with

any chain in the test set. Each protein chain was zoned out from the whole map using a distance of

4.0 Å30. For good quality maps, protein chain and its associated map should have sufficient structural

agreement. The cross-correlation between the experimental map and the simulated map density at

the same resolution with the experimental map generated from the structure was calculated using

the UCSF Chimera50. Only the chains with a cross-correlation of over 0.65 were kept34. The final

training set consists of 100 non-redundant protein chains. The grid intervals for experimental maps

were unified to 1.0 Å using trilinear interpolation. The training EM maps and their corresponding

PDB chains used in this study are listed in Supplementary Table 6.
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2.6.2 Test sets

Three test sets were used to evaluate our DeepMM approach for its accuracy and general applicability,

including one simulated map set and two experimental maps.

The simulated map set was taken from the test set of 40 simulated maps used by MAINMAST30.

The maps were generated at 5.0 Å resolution with a grid spacing of 1.0 Å using the e2pdb2mrc.py

program in the EMAN2 package48.

The first experimental test set is the benchmark of 30 EM maps at 2.6-4.8 Å resolution, which

have been used to evaluate MAINMAST30. The corresponding EM maps were downloaded from the

EMDB, For each EM map, a single subunit was zoned out from the whole density map at a distance

cutoff of 4.0 Å.

In addition, to evaluate the accuracy and general applicability of DeepMM, we have also con-

structed a large test set of EMBD-wide experimental maps. The generation procedure of this set was

similar to that for the experimental training set. Specifically, for each chain of the EM PDB structure

at 2.5-5.0 Å resolution and no more than one subunit (MODEL) from the EMDB, a single density

patch was zoned out from the whole density map at a distance cutoff of 4.0 Å. Any protein chain

and its corresponding EM map patch that met the following situation were removed: (i) including nu-

cleic acids, (ii) missing side-chain atoms, (iii) including “HETATM” residues, (iv) including “UNK”

residues, (v) including less than 50 or equal or more than 300 residues, (vi) having over 30% sequence

identity to any chain in the training set. The cross-correlation between the experimental map and the

simulated density map at the same resolution generated from the structure should be over 0.6534.

Each protein chain was zoned out from the whole map using a distance of 4.0 Å30. The finial test set

consists of 2931 protein chains, which are listed in Supplementary Table 4.

3 Results

3.1 Model reconstruction for simulated EM maps

We first evaluated the performance of our DeepMM algorithm on the test set of 40 simulated density

maps at 5 Å resolution. DeepMM traced the main-chain of protein on the predicted main-chain

probability map rather than the raw EM density map. Thus, the generated Cα models by our DeepMM
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are closer to the native structures with fewer search trajectories and steps compared to MAINMAST.

For each of the 40 maps, DeepMM built 160 Cα models, which were ranked by their alignment

scores. The top-ranked model was selected as the predicted structure.

Figure 3 shows a comparison of the predicted Cα models for the protein chains of different lengths

by DeepMM and MAINMAST. The detailed results are provided in Supplementary Table 2. It can

be seen from the figure that our DeepMM method obtained a much better performance than MAIN-

MAST. As shown in Figure 3a, DeepMM built significantly more accurate Cα models, and achieved

an average Cα RMSD of 0.54 Å when the top scored model was considered, compared to 1.79 Å for

MAINMAST. DeepMM also generated high-quality models with less than 1.0 Å Cα RMSD for all of

the 40 maps, compared with only one such model by MAINMAST. Moreover, DeepMM achieved the

high-accuracy models with less than 0.5 Å RMSD for 22 of 40 maps, whereas MAINMAST failed

to generate any model with < 0.5 Å RMSD (Figure 3a). The program CLICK51 was also used to

evaluate the accuracy of the Cα models built by DeepMM and MAINMAST. The corresponding re-

sults are shown in Figure 3b. Similar to the results of Cα RMSD comparison, DeepMM generated

many more high-quality models according to the CLICK RMSD criterion and achieved an average

CLICK RMSD of 0.53 Å when the top model was considered, compared to 2.18 Å for MAINMAST.

In addition, DeepMM also achieved a significantly higher structure overlap than MAINMAST (Fig-

ure 3c). Except for two top scored models with 99.75% and 99.44% structure overlap, the rest 38

top models generated by DeepMM all have a 100% structure overlap. On average, DeepMM ob-

tained a high structure overlap of 99.98%, compare to 81.88% for MAINMAST. Figure 3 also reveals

that DeepMM generated consistently high-accuracy models for all the proteins of different lengthes,

whereas MAINMAST tended to perform worse with the increasing number of residues in the protein,

suggesting the higher robustness of DeepMM than MAINMAST.

3.2 Model reconstruction for experimental EM maps

Our DeepMM method was further tested on the benchmark of 30 experimental density maps at 2.6-

4.8 Å resolution. For each of the 30 experimental density maps, DeepMM built 4320 protein Cα

models, which were then ranked by their alignment scores.

Figure 4a shows a comparison of the Cα RMSDs for the models built by DeepMM and MAIN-
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MAST. The corresponding data are provided in Supplementary Table 3. It can be seen from the

figure that DeepMM generated significantly more accurate models than MAINMAST. On average,

DeepMM obtained a Cα RMSD of 10.7 Å for the top scored models, which is much better than 22.4

Å by MAINMAST. Moreover, DeepMM predicted a model of < 10 Å for 18 out of 30 top scored

models, of which 14 models are within 5.0 Å Cα RMSD. By contrast, only 7 and 4 models are

within 10.0 Å and 5.0 Å for MAINMAST, respectively. Figure 4b shows a comparison of the results

for the models predicted by DeepMM and RosettaES. It can be seen from the figure that DeepMM

performed much better and generated many more accurate models than RosettaES. Compared to 18

models within 10 Å RMSD by DeepMM, only six models were predicted within 10.0 Å RMSD by

RosettaES for the top predictions. On average, Rosetta obtained an average Cα RMSD of 27.0 Å,

which is much higher than 10.7 Å for DeepMM.

Further examination of the predicted results also reveals that the model accuracy depends more

on the quality than on the resolution of a map. Namely, compared to maps with relatively higher

resolution but lower quality like EMD-3246A/B (2.8 Å) and EMD-5495 (3.5 Å), maps with relatively

lower resolution but higher quality like EMD-2867 (4.3 Å) and EMD-3073 (4.1 Å) are more likely to

be successful in reconstructing a correct model (Supplementary Table 3). This phenomenon can be

attributed to the fact that resolution is a global estimation and resolvability is not necessarily uniform

throughout the whole map52.

Figure 5 gives two examples of successfully reconstructed structures by DeepMM. One exam-

ple, EMD-2867, which is a nucleoprotein at 4.3 Å resolution, was successfully reconstructed by

DeepMM, as shown in Figure 5a. It can be seen from the figure that the predicted main-chain by

DeepMM overlaps well with that of the deposited structure. Accordingly, the predicted model shows

an atomic-accuracy with a Cα RMSD of 3.1 Å. Figure 5b shows the results of another example,

EMD-6272, which is the bovine rotavirus VP6 at 2.6 Å resolution. Because of its high resolution,

DeepMM predicted a very high accurate model with a small Cα RMSD of 1.7 Å. Correspondingly,

the constructed full-atom model by DeepMM shows an excellent overlap with the deposited structure

(Figure 5b).
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3.3 Evaluation of DeepMM on the EMDB-wide data set

To investigate the accuracy and general applicability of our DeepMM method, we have further eval-

uated the performance of DeepMM on a large test set of EMDB-wide experimental maps. This large

test set consists of 2931 diverse EM maps with 2.6-4.9 Å resolutions from the EMDB that have asso-

ciated structures in the PDB (See the Methods section). For each of the 2931 test cases, our DeepMM

method was conducted to reconstruct structures using four combinations of parameters, yielding 640

models for each case. Figure 6 shows a summary of the results predicted by DeepMM. The corre-

sponding data are provided in Supplementary Table 4. Two metrics, RMSD and TMscore, were used

to evaluate the overall accuracy of predicted models. On average, DeepMM achieved a Cα RMSD of

9.8 Å for the top prediction and 8.4 Å for the top 10 predictions on this test set of 2931 maps. The

corresponding average TM-scores are 0.648 and 0.694 for top 1 and top 10 predictions, suggesting

the high accuracy of our DeepMM approach.

Figure 6a shows the percentage of the predicted models at different Cα RMSD cutoffs. It can be

seen from the figure that 53.6% of the top models built by DeepMM are within 10 Å Cα RMSD. For

the top 10 scored predictions, 59.9% of the cases have an RMSD of less than 10 Å. The percentage

of the models with different TM-score cutoffs are showed in Figure 6b. It can be seen from the figure

that 65.6% of the top models built by DeepMM have a TM-score of > 0.5. When the top 10 models

were considered, the corresponding percentage increased to 73.6%. Comparing the results in Figures

6a and b also reveals that the percentages for TM-score are significantly higher than those for Cα-

RMSD, suggesting that the models built by DeepMM still share the same fold with native structure

even if they have a large Cα RMSD.

Figure 6c shows the percentage of correctly predicted top models (i.e. within 10 Å Cα RMSD)

at different resolutions. For EM maps at 2.5-3.0 Å resolution, DeepMM achieved an excellent per-

formance in successfully reconstructing a correct model, and achieved a success rate of 95.3% and

96.2% for the top 1 and 10 scored models, respectively. The performance of DeepMM decreased with

the decreasing map resolution. Specifically, for the EM maps with a resolution of 3.0-3.5 Å, 3.5-4.0

Å, and 4.0-4.5 Å, DeepMM obtained a success rate of 82.5%/87.3%, 53.2%/62.1%, and 22.9%/29.8%

for the top 1/10 predictions, respectively. For EM maps with a resolution of 4.5 Å or worse, it is chal-
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lenging for DeepMM to build correct models. On average, for the maps at 3-5 Å resolution, DeepMM

gave a success rate of 50.3% and 57.0% in reconstructing a correct model within 10 Å Cα-RMSD for

the top 1 and 10 predictions, respectively. Figure 6d shows the percentage of correctly predicted top

models using the criterion of TM-score > 0.5 in different resolution ranges. Similar trends in Figure

6c can be observed in Figure 6d. Specifically, for the maps with a resolution of 2.5-3.0 Å, 3.0-3.5 Å,

3.5-4.0 Å, 4.0-4.5 Å, and 4.5-5.0 Å, DeepMM achieved correct models with a TMscore of > 0.5 for

99.1%/99.5%, 90.7%/94.2%, 69.5%/79.6%, 36.9%/49.1%, and 15.0%/23.5% of the test cases when

the top 1/10 predictions were considered, respectively. On average, for the maps at 3-5 Å resolution,

DeepMM obtained a success rate of 63.0% and 71.6% in building a model with TMscore > 0.5 for

the top 1 and 10 predictions, respectively.

Next, DeepMM was compared with Phenix on this test set, where the Phenix models were gener-

ated using the phenix.map to model tool28 in the Phenix package (version 1.18.2-3874). Two metrics

calculated by phenix.chain comparison were used to evaluate the accuracy of a model. One is the

fraction of the CA atoms in one model matching the CA atoms in another model within 3.0 Å re-

gardless of their residue names (i.e. coverage or residue match). The other is the percentage of the

sequence in the target structure reproduced by the query model (i.e. specificity of sequence match).

It should be mentioned that our sequence match is conducted using 20 types of amino acids. A model

with a high percentage of residue match may have a very low percentage of sequence match because

of mismatching of residue names. Figures 7a and b show the percentages of protein residues and

the sequence reproduced by DeepMM and Phenix at different resolutions. Figures 7c and d give the

histograms of corresponding average values at different resolutions. It can be seen from the figure that

DeepMM achieved a significantly better performance than Phenix in both residue match and sequence

match, especially for those maps at low resolutions. For the maps at resolutions better than 3.0 Å,

94.2% of protein residues in the deposited structures were reproduced by our DeepMM method, com-

pared to 84.7% by Phenix. The corresponding average sequence match is 78.0% for our DeepMM

approach, which is much higher than 59.7% for Phenix. For the maps at 3-5 Å resolution, the average

residue match for DeepMM is 80.7%, compared with 65.0% for Phenix. The corresponding average

sequence match is 38.1% for DeepMM, which is much higher than 19.2% for Phenix. Given that the

prediction of sequence match is much more challenging than that of residue match, the much better
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performance of DeepMM than Phenix in sequence match demonstrated the atomic-accuracy of the

model built by DeepMM.

It is worth mentioning that DeepMM can build fully-connected, full-length all-atom protein mod-

els, whereas Phenix is designed to build initial models of structure fragments. Figure 8 shows the

protein models built by DeepMM and Phenix for one example, Chain A of 6DW1, part of a GABAA

receptor at 3.1 Å resolution. The deposited structure with its associated EM density map (EMD-8923)

is displayed in panel a. Figures 8b and c show the Phenix model and its superimposition with the de-

posited structure, respectively. It can be seen from the figures that the model built by Phenix consists

of multiple fragments without showing any secondary structures, as expected. The predicted model

by Phenix for this map had a residue match of 86.7%, but gave a very low sequence match of 9.9%.

Therefore, although Phenix recovered most parts of the target protein structure from the EM density

map, it assigned wrong residue names for most of the modeled fragments because its low sequence

match, as shown in Figure 8c. In contrast, DeepMM built an excellent all-atom structure for this

map, with a near-perfect residue match of 97.1% and a high sequence match of 86.8%. Therefore, the

model predicted by DeepMM reproduced most of the secondary structures and had an almost identi-

cal chain trace to the deposited structure(Figure 8d). The corresponding amino acid names were also

assigned correctly by our DeepMM approach (Figure 8e).

4 Conclusion

In summary, we have developed a semi-automatic de novo structure determination method for near-

atomic resolution cryo-EM maps using a deep learning-based framework, named as DeepMM. Our

DeepMM approach can reconstruct complete all-atom protein structures for EM maps with atomic-

accuracy. DeepMM was extensively validated on diverse benchmarks and compared with state-of-the-

art approaches including RosettaES, MAINMAST, and Phenix. DeepMM has also been evaluated on

an EMDB-wide large test set of 2931 experimental maps at 2.6-4.9 Å resolution. Overall, DeepMM

was able reconstruct the protein models with TMscore>0.5 for over 60% of the test cases. DeepMM

is fast and able to reconstruct an all-atom structure from an EM map within 1 hr on a single-GPU

machine for an average-length protein chain of 300 amino acids. Given the high computational effi-
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ciency and all-atomic accuracy, it is anticipated that DeepMM will serve as an indispensable tool for

semi-automatic atomic-accuracy structure determination for near-atomic-resolution cryo-EM maps.
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Figure 1: Workflow of our DeepMM method. (a) The flowchart of DeepMM. DeepMM first pre-

dicts the main-chain and Cα probability of each density voxel using a Densely Connected Convolu-

tional Network (DenseNet), and then traces the protein’s main-chain path on the predicted main-chain

probability map. Next, the amino acid and secondary structure types for each main chain point are

predicted by a second DenseNet. The Cα models are generated by aligning the target sequence to

the main-chain paths. Finally, the all-atom structures are constructed from the Cα models using the

ctrip program and refined by an Amber energy minimization. (b) The multi-task deep DenseNet ar-

chitecture used in DeepMM. Starting from an input EM density voxel, two dense blocks are shared

by both tasks in DenseNet A, while only one dense block is shared by both tasks in DenseNet B. Each

prediction task employs two task-specific dense blocks and gives the final prediction.
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Figure 2: Alignment protocol between the target sequence and the predicted main-chain for

DeepMM. (a) DeepMM runs alignments of the target sequence of the EM map against each candidate

main-chain path. Each sphere represents a predicted local dense point (LDP) on the main-chain path.

Predicted information including the Cα probability (on the top), secondary structure (in the middle)

and amino acid class (at the bottom) of LDPs is utilized during alignment. For the target sequence,

its secondary structure is predicted by the SPIDER2 program, as illustrated in the sequence colored

in azure under the amino acid sequence. (b) Scoring matrices for amino acid type matching and

secondary structure matching. (c) The generated Cα models are ranked by their alignment score. (d)

Twenty amino acids are grouped into four classed according to the similarity of their side-chain EM

densities.
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Figure 3: Comparison of the results by DeepMM and MAINMAST for the protein chains with

different lengths. (a) The Cα RMSDs of the top predicted models. (b) The RMSDs of matched Cα

atoms within 3.5 Å by the structure alignment tool CLICK. (c) The structure overlap calculated by

CLICK, which is defined as the fraction of matched Cα atoms.

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2020.08.28.271981doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271981
http://creativecommons.org/licenses/by-nc/4.0/


Figure 4

0 10 20 30 40 50
0

10

20

30

40

50

0 20 40 60 80 100
0

20

40

60

80

100

a

M
A

IN
M

A
S

T
 R

M
S

D
 (

Å
)

DeepMM RMSD (Å)

b

R
o
se

tt
a
 R

M
S

D
 (

Å
)

DeepMM RMSD (Å)

Figure 4: Comparison of the top models for DeepMM and two other approaches on the test set

of 30 experimental maps. The solid line in the figure is the plot of y = x, and the dashed line stands

for y = 10. (a) Comparison of the models by DeepMM and MAINMAST in terms of Cα RMSD. (b)

Comparison of the models by DeepMM and Rosetta in terms of Cα RMSD.
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Figure 5

a

b

Figure 5: Examples of the models generated by DeepMM for experimental EM maps. The

EM density map (transparent grey) and its associated native protein structure (green) are displayed

on the left side. The Cα chains of the DeepMM model (red) and the native structure (green) are

shown in ball-and-stick format on the predicted main-chain probability map (transparent yellow) in

the middle. The full-atom structure generated by DeepMM (red) and the native protein structure

(green) are displayed on the right side. (a) The nucleoprotein at 4.3 Å map resolution (EMD-2867).

The top ranked model by DeepMM has a Cα RMSD of 3.1 Å. (b) The bovine rotavirus VP6 at 2.6Å

map resolution (EMD-6272). The top model by DeepMM has a Cα RMSD of 1.7 Å.
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Figure 6
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Figure 6: Test results of DeepMM on the 2931 experimental test cases. (a) The percentage of the

top scored models at different Cα RMSD cutoffs. (b) The percentage of the top scored models at

different TM-score cutoffs. (c) The percentages of top scored models within 10 Å RMSD in different

map resolution ranges. (d) The percentages of the top scored models with a TM-score above 0.5 in

different map resolution ranges.
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Figure 7
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Figure 7: Comparison of the models by DeepMM and Phenix on the large test set of 2931

experimental maps at different resolutions. The results for Phenix are colored in orange, and

those for DeepMM are colored in royal blue. (a) Percentages of the protein residues in the deposited

structures reproduced by DeepMM and Phenix. (b) Percentages of the sequence of the deposited

structure reproduced by DeepMM and Phenix. (c) Average percentage of residue match by DeepMM

and Phenix. (d) Average percentage of sequence match by DeepMM and Phenix.
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Figure 8
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Figure 8: Protein models reconstructed by DeepMM and Phenix for the Chain A of 6DW1

and its associated EM density map at 3.1 Å resolution (EMD-8923). (a) The native structure

overlapped with its associated EM density map. (b) The model predicted by Phenix, which has a

residue match of 86.7% and a sequence match of 9.9%. (c) The Phenix model (orange) overlapped

with the native structure (green). The enlarged box on the right side shows that the residue names

assigned by Phenix model are different from those of the native structure. (d) The model predicted

by Phenix, which has a residue match of 97.1% and a sequence match of 86.8%. (e) The DeepMM

model (royal blue) overlapped with the native structure (green). The enlarged view of the top region

of the protein on the right side shows that the sequence assigned by DeepMM is close to that of the

native structure.
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