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Abstract 
 

CRISPR-Cas9 viability screens are increasingly performed at a genome-wide scale          

across large panels of cell lines to identify new therapeutic targets for precision cancer              

therapy. Integrating the datasets resulting from these studies is necessary to adequately            

represent the heterogeneity of human cancers and to assemble a comprehensive map of             

cancer genetic vulnerabilities. Here, we integrated the two largest public independent           

CRISPR-Cas9 screens performed to date (at the Broad and Sanger institutes) by assessing,             

comparing, and selecting methods for correcting biases due to heterogeneous single guide            

RNA efficiency, gene-independent responses to CRISPR-Cas9 targeting originated from copy          

number alterations, and experimental batch effects. Our integrated datasets recapitulate          

findings from the individual datasets, provide greater statistical power to cancer- and            

subtype-specific analyses, unveil additional biomarkers of gene dependency, and improve the           

detection of common essential genes. We provide the largest integrated resources of            

CRISPR-Cas9 screens to date and the basis for harmonizing existing and future functional             

genetics datasets. 
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Cancer is a complex disease that can arise from multiple different genetic alterations. The 

alternative mechanisms by which cancer can evolve result in considerable heterogeneity 

between patients, with the vast majority of them not benefiting from approved targeted 

therapies1. In order to identify and prioritize new potential therapeutic targets for precision 

cancer therapy, analyses of cancer vulnerabilities are increasingly performed at a 

genome-wide scale and across large panels of in vitro cancer models2–11. This has been 

facilitated by recent advances in genome editing technologies allowing unprecedented 

precision and scale via CRISPR-Cas9 screens. Of particular note are two large pan-cancer 

CRISPR-Cas9 screens that have been independently performed by the Broad and Sanger 

institutes2,12. The two institutes have also joined forces with the aim of assembling a joint 

comprehensive map of all the intracellular genetic dependencies and vulnerabilities of 

cancer: the Cancer Dependency Map (DepMap)13,14. 

 

The two generated datasets collectively contain data from over 1,000 screens of 

more than 900 cell lines. However, it has been estimated that the analysis of thousands of 

cancer models will be required to detect cancer dependencies across all cancer types3. 

Consequently, the integration of these two datasets will be key for the DepMap and other 

projects aiming at systematically probing cancer dependencies. These integrated datasets 

will provide a more comprehensive representation of heterogeneous cancer types and form 

the basis for the development of effective new therapies with associated biomarkers for 

patient stratification 15. Further, designing robust standards and computational protocols for 

the integration of these types of datasets will mean that future releases of data from 

CRISPR-Cas9 screens can be integrated and analyzed together, paving the way to even 

larger cancer dependency resources. 

 

We have previously shown that the pan-cancer CRISPR-Cas9 datasets 

independently generated at the Broad and Sanger institutes are consistent on the domain of 

147 commonly screened cell lines16. The reproducibility of these CRISPR screens holds 

despite extensive differences in the experimental pipelines underlying the two datasets, 

including distinct CRISPR-Cas9 sgRNA libraries. Here we investigate the integrability of the 

full Broad/Sanger gene dependency datasets, yielding the most comprehensive cancer 

dependency resource to date, encompassing dependency profiles of 17,486 genes across 

908 different cell lines that span 26 tissues and 42 different cancer types. We compare 

different state-of-the-art data processing methods to account for heterogeneous single-guide 

RNA (sgRNA) on-target efficiency, and to correct for gene independent responses to 
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CRISPR-Cas9 targeting 12,17,18, evaluating their performance on common use cases for 

CRISPR-Cas9 screens (Figure 1a, 1b and 1c). 
 

 

 
Figure 1: Schematic of the integration strategy.  a. Broad and Sanger gene dependency datasets (raw count data of 

single-guide RNAs) are downloaded from respective web-portals. b. The datasets from each institute are pre-processed 

with three different methods, accounting for gene-independent responses to CRISPR-cas9 targeting (arising from copy 

number amplifications) and heterogeneous sgRNA efficiency, providing gene-level corrected depletion fold changes. Then, 

four different batch-correction pipelines are applied to the gene level fold changes across the two institute datasets for each 

of the pre-processing methods. c. Twelve different integrated datasets resulting from applying three different pre-processing 

methods (as indicated by the border colors) and four different batch-correction pipelines (as indicated by the fill colors) are 

benchmarked. d. Advantages provided by the final integrated datasets and conservation of analytical outcomes from the 

individual ones are investigated. 

 

 

We show that our integration strategy accounts and corrects for technical biases whilst 

preserving gene dependency heterogeneity and recapitulates established associations 

between molecular features and gene dependencies. We highlight the benefits of the 

integrated dataset over the two individual ones in terms of improved coverage of the 

genomic heterogeneity across different cancer types, identification of new 

biomarker/dependency associations, and increased reliability of human 
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core-fitness/common-essential genes (Figure 1d). Finally, we estimate the minimal size (in 

terms of the number of screened cell lines) required in order to effectively correct batch 

effects when integrating a new dataset. 

Collectively, this study presents a robustly benchmarked framework to integrate 

independently generated CRISPR-Cas9 datasets that provide the most comprehensive 

resource for the exploration of cancer dependencies and the identification of new oncology 

therapeutic targets. 

 

 

Results 
Overview of the integrated CRISPR-Cas9 screens 

 

The Sanger’s Project Score CRISPR-Cas9 dataset (part of the Sanger DepMap)19 

and the Broad’s 20Q2 DepMap dataset20,21 contain data for 317 and 759 cell lines, 

respectively. Overall, these represent screens for 908 unique cell lines (Figure 2a, 
Supplementary Table 1 ). Together these cell lines spanned 26 different tissues (Figure 2b) 
and for 16 of these the number of cell lines covered increased when considering both 

datasets together. Similarly, the integrated dataset provided richer coverage of specific 

cancer types and clinically relevant subtypes (Figure 2c). These preliminary observations 

highlight the first benefit of combining these resources to increase statistical power for 

tissue-specific as well as pooled pan-cancer analyses. 

 

Between the two datasets, there was an overlap of 168  cell lines screened by both 

institutes, encompassing 16 different tissue types (median = 8, min 1 for Soft Tissue, Biliary 

Tract and Kidney, max 28 for Lung, Figure 2a and 2b). The set of overlapping cell lines 

enabled the estimation of batch effects due to differences in the experimental protocols 

underlying the two datasets16, without biasing the correction toward specific cell line 

lineages. 
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Figure 2. Overview of CRISPR-Cas9 screened cancer cell lines. a. Number of cell lines screened by the Broad and the 

Sanger institutes and their overlap. b. Overview of the number of cell lines screened for each tissue type across the two 

datasets. c. Number of screened Lung cancer and Breast cancer cell lines split according to cancer types and PAM50 

subtypes, respectively, across the two datasets. 

Data Pre-processing 
Known biases in CRISPR screens arise due to nonspecific cutting toxicity that 

increases with copy number amplifications (CNAs)22,23 and heterogeneous levels of on-target 

efficiency across sgRNAs targeting the same gene 24. Multiple methods exist to correct for 

these biases. Here, we evaluate three: CRISPRcleanR, an unsupervised nonparametric 

CNA effect correction method for individual genome-wide screens17; a method resulting from 

using CRISPRcleanR with JACKS, a Bayesian method accounting for differences in guide 

on target efficacy18 (CCR-JACKS) through joint analysis of multiple screens; and CERES, a 

method that simultaneously corrects for CNA effects and accounts for differences in guide 

efficacy12, also analyzing screens jointly. 
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Batch effect correction 
Technical differences in screening protocols, reagents and experimental settings can 

cause batch effects between datasets. These batch effects can arise from factors that vary 

within institute screens (for example, differences in control batches and Cas9 activity levels) 

as well as between institutes (such as differences in assay lengths and employed sgRNA 

libraries). When focusing on the set of cell lines screened at both institutes, a Principal 

Component Analysis (PCA) of the cell line dependency profiles across genes (DPGs) 

highlighted a clear batch effect determined by the origin of the screen, irrespective of the 

pre-processing method, consistent with previous results (Figure 3a)16. 

 
We quantile-normalized each cell line DPG and adjusted for differences in screen 

quality in the individual Broad/Sanger data sets. The combined Broad/Sanger dataset was 

then batch corrected using ComBat25 (Methods). Following ComBat correction, the combined 

datasets on the overlapping cell lines showed reduced yet persistent residual batch effects 

clearly visible along the two first principal components (Supplementary Figure 1). Analysis 

of the first two principal components (using MsigDB gene signatures26 and all cell lines, 

Methods), showed enrichment for metabolic processes (phosphorus metabolic process 

q-value = 1.06e-08, protein metabolic process q-value = 8.70e-07, hypergeometric test) in 

the first principal component. The enrichment of metabolic processes is consistent with 

differences identified across these datasets due to different media conditions employed in 

the underlying experimental pipelines27,28. The second principal component contained 

significant enrichments for protein complex organisation and assembly (q-value = 1.57e-16 

and 5.28e-11 respectively, hypergeometric test) (Supplementary Table 2), which have no 

obvious associations with technical biases found in CRISPR-cas9 screens. Based on these 

results, we considered four different batch correction pipelines and evaluated their use in our 

integrative strategy. In the first pipeline, we processed the combined Broad/Sanger DPG 

dataset using ComBat alone (ComBat). In the second, we applied a second round of 

quantile normalization following ComBat correction (ComBat+QN) to account for different 

phenotype intensities across experiments, resulting in different ranges of gene dependency 

effects. In the third and fourth pipelines we also removed the first one or two principal 

components respectively (ComBat+QN+PC1) and (ComBat+QN+PC1-2). 

The final 12 datasets contained data from unique screens of 908 cell lines using each 

of the three pre-processing methods and four different batch correction pipelines as outlined 

in the previous section. To assess the performance of different batch correction pipelines we 

estimated, using the overlapping cell lines, the extent to which each cell line DPG from one 

study matched that of its counterpart (derived from the same cell line) from the other study 
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following batch correction. To quantify the agreement, we calculated for each DPG its 

similarity to all other screen DPGs using a weighted Pearson’s (wPearson) correlation 

(Methods). We then calculated the proximity of a cell line to its counterpart compared to all 

other cell lines using the wPearson as a metric (Recall of cell line identity) (Figure 3b ). 
The best performances were obtained when removing either the first or the first two 

principal components following ComBat and quantile normalization, i.e. ComBat+QN+PC1 or 

ComBat+QN+PC1-2. Across pre-processing methods, CERES performed best with 302 

(90%) of the cell lines being closest to their counterpart from the other study (k = 1) followed 

by CRISPRcleanR with 272 cell lines (81%) and CCR-JACKS with 215 (64%). The Recall of 

cell line identity was high for each integration pipeline with normalized Area under the curve 

(nAUC) values of 0.98 for CCR-JACKS and 0.99 for CRISPRcleanR and CERES when 

considering the best performing ComBat+QN+PC1-2 batch correction method. 
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Figure 3: Batch effect assessment and correction. a. Principal component plots of the dependency profile across genes 

(DPGs) for cell lines screened in both Broad and Sanger studies and pre-processing methods. Screens are colored by the 

institute of origin.  b. Percentages of cell line DPGs that have the corresponding (same cell line) DPG screened at the other 

institute among their k most correlated DPGs (the k-neighborhood). Results are shown across different pre-processing 

methods (in different plots) and different batch correction pipelines (as indicated by the different colors). Correlations 

between DPGs are computed using a weighted Pearson correlation metric. Genes with higher selectivity have a larger 

weight in the correlation calculation. As a measure of selectivity we used the average (across the two individual datasets) 

skewness of a gene’s dependency profile across cell lines. The proportion of cell lines closest to their counterpart from the 

other study (k = 1) is shown and the normalised areas under the curves (nAUC) are shown in brackets. The x-axis values 

are restricted to between 1-100 to highlight the range over which performance differences are visible between datasets. 
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Performance of the integration pipelines 
We evaluated the performance of each of the 12 integrated datasets, containing 908 cell 

lines, under four use-cases: the identification of i) essential and non-essential genes ii) 

lineage subtypes iii) biomarkers of selective dependencies and iv) functional relationships. 

 

 

Identification of essential and non-essential genes 

A cell line DPG with a large separation of dependency scores (DS) of common 

essential and non-essential genes should yield lower misclassification rates when identifying 

dependencies specific to that cell line. For each cell line we measured the separation of 

dependency scores (DS) between known common essential and non-essential genes11 

across all integrated datasets. As a measure of separation we used the null-normalized 

mean difference (NNMD)29, defined as the difference between the mean DS of the common 

essential genes and non-essential genes divided by the standard deviation of the DSs of the 

non-essential genes. 

 

By analysing multiple screens jointly, CERES and JACKS borrow essentiality signal 

information across screens. As a consequence, these methods better identify consistent 

signals across cell line DPGs (i.e. for common essential and non-essential genes), 

especially for DPGs derived from lower quality experiments, or reporting weaker depletion 

phenotypes18,23. Consistently, CERES (median NNMD range [-5.78, -5.88]) showed better 

NNMD values than CRISPRcleanR (median NNMD range [-5.02, -5.12], Wilcox test (WT) 

p-value < 2.2e-16) and CCR-JACKS (median NNMD range [-5.14, -5.23], WT  p-value < 

2.2e-16)), and similarly CCR-JACKS had better NNMD values than CRISPRcleanR (largest 

WT  p -value < 0.0005) (Figure 4a). Comparing the batch correction methods, 

ComBat+QN+PC1-2 had marginally better performance across all pre-processing methods. 

  

Next, we evaluated the gene dependency false-positive rates across all integrated 

datasets. For each cell line DPG, we defined a set of putative negative controls composed of 

genes not expressed at the basal level in that cell line (Methods). False positives were 

calculated as the sum of negative controls identified as significant dependencies (in the top 

15% most depleted genes) normalized by their total number across the DPG. There was 

little difference in false-positive rates across the four different batch correction pipelines, with 

a slight improvement when two principal components were removed (Figure 4b). CERES 

outperformed CCR-JACKS significantly for all batch correction methods (largest 𝜒2 
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contingency table p-value 1.87 x 10 -11, N=1.43 x 10 7) and CCR-JACKS outperformed 

CRISPRCleanR (p-value below machine precision). Comparing the correction methods, the 

differences between ComBat and ComBat+QN and between ComBat+QN+PC1 and 

ComBat+QN+PC1-2 were generally not significant across preprocessing methods, while the 

difference between either ComBat or Combat+QN and either ComBat+QN+PC1 or 

ComBat+QN+PC1-2 were generally significant (largest p-value 1.42 x 10 -5). As a final test of 

control separation, we used the unexpressed genes as an empirical null distribution for each 

DPG to estimate p- values for all DS and thus false discovery rates (FDRs) within each DPG. 

We calculated the recall of a reference set of common essential genes11 at 10% FDR 

(Figure 4c ). Again CERES outperformed CCR-JACKS which outperformed CRISPRCleanR, 

and increasing the number of steps in the batch correction pipeline monotonically improved 

essential recall for all preprocessing methods. All differences between preprocessing 

methods and batch correction methods were significant, with the largest observed t-test 

(related) p-value 1.96 x 10 -3 (N = 830).  
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Figure 4: Use case recall of essential genes and lineage identification . a. Null-normalized mean difference (NNMD, a 

measure of separation between dependency scores of prior-known essential and non-essentials genes): defined as the 

difference in means between dependency scores of essential and non-essential genes divided by standard deviation of 

dependency scores of the non-essential genes. Lower values of NNMD indicate better separation of essential genes and 

non-essential genes. b. False positive rates across all pre-processing methods and batch-correction pipelines. In the gene 

dependency profile of a given cell line, a significant dependency gene was called a false positive if that gene was not expressed 

in that cell line. c. Recall of known essential genes across all pre-processing methods and batch-correction-pipelines at 10% 
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FDR. d. Agreement between cell line clusters based on DPGs correlation and tissue lineage labels of corresponding cell lines, 

across pre-processing methods and batch-correction pipelines. e. Agreement of Lung CRISPR-cas9 fitness profiles according 

to the Lung cancer subtypes. For each query Lung cancer cell line in turn we computed correlation scores to all other Lung 

cancer cell lines (responses). We then ranked the response cell lines according to these correlations. For each query cell line, 

the rank position k of the most correlated response cell line from the same cancer subtype (matching response) was identified. 

A rank of k = 1 indicates that the query cell line was closest to another cell line from the same cancer subtype. The curves show 

the ratio of query cell lines with a matching response within a given rank position. The proportion of query cell lines with a 

matching response in k = 1 are also shown as percentages for each dataset. The normalised area under the curve (nAUC) for 

each dataset is shown in brackets. The figure shows the x-axis zoomed in to between 0 and 60. 
  

 

Identification of lineage subtypes  

Many dependencies are context specific, reducing cellular fitness in a subset of 

lineages, that can be used to elucidate gene function and identify cancer type specific 

vulnerabilities. To evaluate the ability of the integrated datasets in recapitulating tissue 

lineages and clinical subtypes we first estimated the extent of conserved similarity between 

screens of cell lines derived from the same tissue lineage. We evaluated the tendency of 

screens of cell lines from the same lineage to yield similar results by comparing 

unsupervised clusterings of the batch-corrected cell line DPGs to the lineage labels of the 

cell lines. To this aim, we performed one hundred k-means clusterings of each of the 12 

datasets, with k equal to the number of tissue lineages screened in at least one study. We 

then calculated the adjusted mutual information (AMI, Methods) between each DPG 

clustering and the partition of the cell lines induced by their lineage labels. We observed 

higher than chance AMI between the obtained k clusters and the tissue lineages of the cell 

line DPGs, regardless of the starting batch corrected dataset (largest single-sample t-test 

p-value of 3.59 x 10 -135, N  = 100, Figure 4d ). Under each pre-processing method the 

removal of one or two principal components resulted in an increased AMI between cell line 

DPGs clusters and tissue lineages.  

 

We next measured the ability of each of the integrated datasets to separate cell lines 

according to lineage subtypes. The integrated datasets contain over 100 Lung cell lines. 

These cell lines can further be stratified into subtypes such as Small cell lung carcinoma and 

Mesothelioma, whilst clinical subtypes such as PAM50 classifications are available for the 

Breast cancer cell lines (Figure 2c). To quantify the clustering of cell lines by subtype we 

calculated the correlation between all cell lines DPGs, and for a given query cell line the rank 

of the cell line with most correlated DPG to the query from the same subtype (k-rank). For 

the Lung cancer cell lines, the percentage of cell lines whose closest neighbour was from the 

same subtype (k = 1) was greatest for CERES (64-65% across batch correction methods) 
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followed by CRISPRcleanR (61-64%) and CCR-JACKS (50-57%), with slight improvement 

with the removal of 1 or 2 principal components (Figure 4e). The normalised area under the 

curve (nAUC) values showed little variation across batch correction methods and were 

broadly similar between the pre-processing methods CERES (Lung = 0.96, Breast = 0.91 - 

0.92), CCR-JACKS (Lung = 0.95 - 0.96, Breast = 0.84 - 0.85), CRISPRcleanR (Lung=0.96 - 

0.97, Breast=0.89 - 0.9)(Supplementary Figure 2 ). 
 

 

Identification of biomarkers 

Interesting potential novel therapeutic targets are genes that show a pattern of 

selective dependency, i.e. exerting a strong reduction of viability upon CRISPR-Cas9 

targeting in a subset of cell lines. Furthermore, these selective dependencies are often 

associated with molecular features that may explain their dependency profiles (biomarkers). 

We investigated each of the integrated datasets’ ability to reveal tissue-specific biomarkers 

of dependencies. As potential biomarkers we used a set of 676 clinically relevant cancer 

functional events (CFEs30), across 17 different tissue types. The CFEs encompass mutations 

in cancer driver genes, amplifications/deletions of chromosomal segments recurrently 

altered in cancer, hypermethylated gene promoters and microsatellite instability status. For 

each CFE and tissue type, we performed a Student’s t-test for each selective gene 

dependency (SGD, Methods) contrasting two groups of cell lines based on the status of CFE 

under consideration (present/absent), for a total number of 2,142,162 biomarker/dependency 

pairs tested. 

 

The total number of significant biomarker/dependency associations showed little variation 

across batch-correction methods at 5% FDR. However, a significantly larger number of 

biomarker/dependency associations were identified when using CRISPRcleanR compared to 

CCR-JACKS (largest  p-value 1.0e-14, proportion test) or CERES (largest  p-value 3.60e-10, 

proportion test) whilst little significant difference was found between CCR-JACKS and 

CERES (smallest  p-value 0.038, proportion test) (Figure 5a, Supplementary Table 3). 
Similar results were seen when the CFEs were split according to whether the biomarker was 

a mutation, recurrent copy number alteration or hypermethylated region (Supplementary 
Figure 3) . 
 

We next examined the ability of each dataset to recover known selective 

dependencies in individual cell lines. We downloaded a set of oncogenic gene alterations 
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from OncoKB31,32. After filtering for genes that tend to be common essentials (mean 

dependency score lower than -0.5 in the CRISPRcleanR-ComBat dataset, where -1 is the 

median of scores of known common essentials), we considered the oncogenes as positive 

controls in cell lines where they had indicated oncogenic or likely-oncogenic gain of function 

alterations, and negative controls in all others. For each oncogene, we measured the NNMD 

between positive and negative cell lines (Figure 5b). We found little difference in median 

performance by either preprocessing method or batch correction method. We then collected 

the dependency scores of all oncogenes in cell lines with a corresponding oncogenic 

alteration and measured receiver operator characteristic (ROC) AUC between them and the 

dependency scores of the same genes in cell lines without oncogenic alterations (Figure 
5c). By this measure, CRISPRcleanR outperformed CERES by 2.2% and CCR-JACKS by 

4.0%, with minimal variations across batch correction method.  

 

 

Recovery of functional relationships 

 We tested the ability of each dataset to identify expected dependency relations 

between paralogs, gene pairs coding for interacting proteins, or members of the same 

complex using gene pairs annotation from publicly available databases33–35 (Methods). For 

each pair of genes known to have a functional relationship, we selected a random pair of 

genes with similar mean dependency scores across cell lines to serve as null examples. We 

calculated the false discovery rate for the known pairs using the absolute Pearson 

correlation of their dependency profiles versus those of the null examples. Recovery of 

known relationships was unsurprisingly low, since many genes with known functional 

relationships do not exhibit selective viability phenotypes. ComBat+QN+PC1 or PC1-2 

recovered the greatest number of expected gene dependency relations at 10% FDR (Figure 
5d). 
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Figure 5: Use case Biomarkers and functional relationships . a. For each tissue pairs of Cancer Functional 

Events (CFEs) and dependencies were tested for significant associations between the gene dependency and the 

absence/presence of a biomarker (CFE). The bar chart shows the total number of significant associations at 5% FDR across 

tissue types for each of the integrated datasets.  b. The per-oncogene NNMD between cell lines with and without an indicated 

oncogenic gain-of-function indication (more negative is better). c. For all identified oncogenes collectively, the receiver-operator 

characteristic (ROC) AUC between oncogene scores in cell lines where they have an indicated gain-of-function mutation and 

cell lines where they do not. d. For each dataset, the number of known gene-gene relationships recovered at 10% FDR. 

 

 

Final selection of pre-processing methods and batch-correction pipelines 
Comparing the performance of batch correction methods across the use-cases we found 

that ComBat+QN outperformed ComBat alone and removing one or two principal 

components had similar or noticeable increases in performance compared to ComBat+QN. 
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The principal component analysis indicated that ComBat+QN+PC1 corrected for linear and 

non-linear effects of technical confounders including assay length, guide library and media 

conditions. Removing the first two principal components offered little improvement over 

removing the first principal component alone and we found no attributable technical bias in 

the gene sets enriched in the second principal component. Overall, we selected 

ComBat+QN+PC1 as the batch correction pipeline as it had good performance over all 

metrics and a reduced impact on the data with respect to ComBat+QC+PC1-2, whilst still 

correcting for multiple technical biases. Comparing the pre-processing methods we found 

that CERES outperformed the other methods while identifying essential genes and lineage 

subtypes, that CRISPRcleanR showed higher performance in the biomarker association use 

case, and these two methods performed comparably and better than CCR-JACKS in 

identifying known gene-gene relationships. As a conclusion, we selected both CERES and 

CRISPRcleanR as processing methods and considered the two corresponding integrated 

datasets as the final results of our pipeline. 
 

 

 

Advantages of the integrated datasets over the individual ones 
In-line with the results from all the use-cases, we estimated the benefits of the 

integrated datasets with respect to the individual ones, in terms of increased capacity to 

unveil reliable sets of common essential genes (using CERES), as well as increased 

diversity of genetic dependencies and biomarker associations (using CRISPRcleanR).  

 

To evaluate the increased coverage of molecular diversity and genetic dependencies 

in the integrated dataset we first estimated the increase in the number of detected gene 

dependencies with respect to the two individual datasets. To this aim, using the 

CRISPRcleanR processed dataset we quantified the number of genes significantly depleted 

in n cell lines (at 5% FDR, Methods) for a fixed number of cell lines n (with n = 1, 3, 5 or n ≥ 

10) of the integrated dataset, as well as in the individual Broad and Sanger datasets. The 

integrated dataset identified more dependencies, indicating greater coverage of molecular 

features and dependencies than in the individual datasets (Supplementary Figure 4a). 
 

We then evaluated the ability of the CERES processed integrated dataset to predict 

common essential genes and its performance when compared to the individual datasets and 

two existing sets of common essential genes from recent publications: Behan 2 and Hart36. 

We predicted common essential genes using two methods: the 90th-percentile method 16 and 
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the Adaptive Daisy Model (ADaM)2. The majority of genes called common essentials 

according to one of ADaM or 90th percentile methods was also identified by the other (1,482 

out of 2,103, Supplementary Figure 4b ). We assigned to each of the 2,103 common 

essential genes a tier based on the amount of supporting evidence of their common 

essentiality. Tier 1, the highest confidence set comprised the 1,482 genes found by both 

methods. Tier 2 had 621 genes found by only one method (Supplementary Table 4). 
 

For each predicted set of common essential genes, we calculated Recall rates of 

known essential genes sets obtained from KEGG37 and Reactome 38 pathways. These 

pathways included Ribosomal protein genes, genes involved in DNA replication and 

components of the Spliceosome (Methods). The Integrated set of common essentials (Tier 1 

and 2) showed greater Recall of known essential genes compared to Behan and Hart, and 

increased Recall over the individual datasets for 5 out of the 6 gene sets (Figure 6a). 
 

We next generated a set of 647 genes that were never expressed across the panel of 

cell lines, to serve as high confidence negative controls (Methods). We calculated the 

proportion of negative controls in each set of common essentials genes. The best 

performance was for the Hart gene set (0%) followed by the integrated data set (0.33%) 

(Figure 6b ). As the positive and negative controls did not cover all genes we further 

investigated the genes predicted to be common essentials. The integrated dataset predicted 

the largest number of common essentials, with 233 genes found in the integrated data set 

alone. The 233 genes were enriched for Cell cycle genes (FDR 3.06e-9) and mitochondrial 

gene expression (FDR 3.66e-7), indicative of essential cellular processes. Similar results 

were observed for the 1,159 genes in the integrated set of common essentials but neither of 

the existing datasets (Behan and Hart) (Supplementary Table 5) 
 
We next asked whether the CRISPRcleanR processed integrated dataset was able 

to unveil additional significant gene dependencies and CFE/gene-dependency statistical 

interactions compared to either one of the Broad or Sanger (individual) datasets. Performing 

systematic biomarker analysis using CFEs on cell lines from individual tissue lineages 

unveiled 52 additional significant associations in the integrated dataset (when considering 

only CFE/gene-dependency pairs testable in the individual datasets at 1% FDR) with respect 

to those using the Sanger dataset alone, and 68  with respect to the Broad dataset 

(Supplementary Table 6 ). Examples included decreased dependency on MDM2 in TP53 

mutant Lung cell lines for the Sanger dataset, and increased dependency on STAG1 in 

STAG2 mutated Central Nervous System cancer cell lines for the Broad dataset (Figure 6c). 
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Furthermore, 19 tissue-specific significant associations identified in the integrated dataset 

were tested but not found significant in either the Broad or the Sanger dataset (Figure 6d). 
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Figure 6: Advantages of an integrated dataset . a. Recall of essential genes sets for the integrated dataset, across 

different tiers, compared to two previously published gene sets (Behan and Hart). b. Proportion of genes in the common 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2020.05.22.110247doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110247
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Sample size requirements for efficient data integration 

 

To further increase the coverage of a cancer dependency map, new CRISPR-cas9 

screens should be integrated into the existing datasets as they are generated. To aid in this 

integration we estimated the minimum number of overlapping cell lines that should be 

screened to efficiently calculate and correct batch effects. We performed a downsampling 

analysis on the 168 cell lines screened at both Sanger and Broad, ranging from 5% to 90%, 

and used the obtained subset of cell lines to estimate and correct batch-effects using 

ComBat. Following this, for each cell line DPG generated at either institute, we computed the 

Pearson correlation following batch correction using all 168 overlapping cell lines (Figure 
6e). We found a high degree of correlation between datasets at all levels of downsampling, 

with the minimum of 8 samples still reducing batch effects when compared to no batch 

correction (N = 0) (Supplementary Figure 4c). We next evaluated the batch correction 

using the average silhouette width (ASW) of the clustering induced by the institute of origin 

of the cell lines as a measure of the extent to which cell lines from the same institute 

clustered together. As expected, as the number of samples used to estimate and correct the 

batch effect decreases, the DPGs increasingly cluster by the batch of origin (Figure 6f).  
The ASW and Pearson correlation metrics both showed clear convergence with 

increasing sample size and at the same rate. Given the convergence of these metrics, the 

results showed that the 168 overlapping cell lines used were sufficient to maximise the batch 

correction using ComBat. Further the downsampling analysis showed convergence was 

reached at 90 cell lines and that between 30 and 40 cell lines would be sufficient to provide a 

batch corrected dataset that is highly correlated (over 0.995) with that obtained when 

estimating and correcting batch effects with using more than 90 cell lines. 

The 168 overlapping cell lines contained cell lines from 16 different lineages. To 

investigate the impact of lineage composition of the cell lines on the batch correction we also 
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essential gene sets that are constitutively not expressed across the panel of cell lines and therefore likely to be false 

positive results. c. Examples of significant associations between genes and features, found in the integrated dataset 

compared to the individual dataset. d. Examples of significant associations found in the integrated dataset that were not 

significant in either of the individual datasets. e. The boxplots contain 50 random samples of between 5% and 90% of 

the 168 overlapping cell lines (number of cell lines in each sample indicated on the x-axis). For each sample the Pearson 

correlation of the DPGs following ComBat correction compared to the integrated dataset was calculated for each 

pre-processing method. f. The average silhouette width (ASW) for each downsampled dataset was calculated using the 

institute of origin as the cluster label. An ASW of close to zero indicating a near random performance of the clustering, 

meaning the samples do not cluster by the origin of the screen and batch effects have been removed. 
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used a single lineage to estimate the batch effects. In the overlapping cell lines the Lung 

lineage had the most cell lines (28 in total). We subsampled the Lung cell lines to include 8, 

17 or 25 cell lines (Supplementary Figure 4de ) and found little difference in performance 

between using a single and a mixture of lineages, indicating that this is not a major factor for 

estimating batch effects. 

 
 
 
 

Discussion 
 

The integration of data from different high-throughput functional genomics screens is 

becoming increasingly important in oncology research to adequately represent the diversity 

of human cancers. Integrating CRISPR-Cas9 screens performed independently and/or using 

distinct experimental protocols, requires correction and benchmarking strategies to account 

for technical biases, batch effects and differences in data-processing methods. Here, we 

proposed a strategy for the integration of CRISPR-Cas9 screens and evaluated methods 

accounting for biases within and between two dependency datasets generated at the Broad 

and Sanger institutes. 

Our results show that established batch correction methods can be used to adjust for 

linear and non-linear study-specific biases. Our analyses and assessment yielded two final 

integrated datasets of cancer dependencies across 908 cell lines. In contrast to existing 

databases of CRISPR-Cas9 screens39,40, our integrated datasets are corrected for batch 

effects allowing for their joint analysis. Following integration, dependency profiles of cell lines 

from the same tissue lineage and cancer specific subtypes show good concordance. Our 

integrated datasets cover a greater number of genetic dependencies, and the increased 

diversity of screened models allows additional associations between biomarkers and 

dependencies to be identified. 

The integrated datasets were the output of two orthogonal pre-processing methods, 

CRISPRcleanR and CERES. The use-case analysis showed that CERES (which borrows 

information across screens) yields a final dataset better able to identify prior known essential 

and non-essential genes and clustering of cell lines by lineage. In contrast, CRISPRcleanR 

(a per sample method) was better able to detect associations between selective 

dependencies and potential biomarkers, and had better recall of known oncogenic 
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addictions. Therefore, results from both processing methods provide the best overall 

data-driven functional Cancer Dependency Map.  

The data integration strategies and sample size guidelines outlined here can be used 

with future and additional CRISPR-Cas9 datasets to increase coverage of cancer 

dependencies. This will be important for oncological functional genomics, for the 

identification of novel cancer therapeutic targets, and for the definition of a global cancer 

dependency map. Further, as library design improves24,41,42 we would expect the coverage 

and accuracy of the integrated datasets to also improve.  

22 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2020.05.22.110247doi: bioRxiv preprint 

https://paperpile.com/c/BNwyax/EqQvF+Ztmd+DkGL
https://doi.org/10.1101/2020.05.22.110247
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data availability 
The final integrated datasets are available for download at         

https://figshare.com/projects/Integrated_CRISPR/78252 . The data will also be made       

accessible through the DepMap (https://depmap.org) and Score       

(https://score.depmap.sanger.ac.uk) web portals in early 2021. 

 

Code availability 
Scripts and software packages implementing the integration pipeline described in this           

manuscript and needed to reproduce results and figures are available on GitHub at             

https://github.com/DepMap-Analytics/IntegratedCRISPR with data sources available on      

Figshare: https://figshare.com/projects/Integrated_CRISPR/78252 . 
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Methods 
 
Preprocessing data 

Sanger data processed with CRISPRcleanR were obtained from the Score website 

(https://score.depmap.sanger.ac.uk/). The CRISPRcleanR corrected counts were used as 

input into JACKS, for the CCR-JACKS processing method. Raw counts and the copy 

number profiles for the Sanger dataset downloaded were processed with CERES20. The 

Broad data processed with CERES (unscaled gene effect) version 20Q2 scores were 

downloaded from the Broad DepMap portal 20. The raw counts for Broad data 20Q2 were 

processed with CRISPRcleanR and the CRISPRcleanR corrected counts processed with 

JACKS. Gene names were matched across the Broad and Sanger datasets by updating 

both to the current version of HUGO gene symbols from the HGNC website. Missing entries 

were mean imputed for the principal component removal and then re-assigned as NA in the 

final matrix. Cell lines processed by both CERES and CRISPRcleanR were used for 

analysis. Tissue annotations for each cell line were obtained from the Cell Model Passports 

(https://cellmodelpassports.sanger.ac.uk/)43. 

 

Batch correction pipelines 

The dependency profiles across genes (DPGs) for overlapping cell lines from each institute 

were first quantile normalized using the preprocessCore package in R44. Screen quality 

adjustments were made by fitting a spline to the average gene fold change across cell line 

DPGs. Each DPG was then adjusted to remove the difference between the fitted spline and 

the diagonal. The overlapping cell lines were then batch corrected using three different 

methods. A standard least squares model was fitted in R. The ComBat correction was 

performed using the sva package in R45. 

 

Batch correction pipelines’ assessment and weighted Pearson correlation metric 

Cell lines’ rank neighborhoods were based on a weighted Pearson correlation metric. The 

weights were defined as the absolute mean (over the Broad and Sanger datasets) of a gene 

dependency signal skewness across the 168 overlapping cell lines for the Broad and Sanger 

datasets. Using skewness upweights genes with a variable and sufficiently selective fitness 

profile whilst downweighting those that show weak/no-signal or unselective dependencies. 

Then for each query DPG we ranked all the others based on how similar they were to the 

fixed one in decreasing order, according to the wPearson scores. For each position k in the 

resulting rank we then defined a k-neighborhood of the query DPG composed of all the other 

DPGs whose rank position was ≤ k. Finally we determined the number of cell line DPGs that 
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had the DPG derived from screening the same cell line in the other dataset (a matching 

DPG) in its k-neighborhood. The final rank for each cell line was defined based on the 

minimum rank obtained for each cell line when considering the DPG for that cell line from the 

Broad data compared to all DPGs, and similarly the DPG for the cell line in the Sanger 

dataset compared to all DPGs. 

 

Analysis of Principal Components 

The first two principal components (PCs) were extracted from ComBat corrected 

CRISPRcleanR data using the prcomp function in R. The top 500 genes (according to the 

absolute value of their PC loadings) were selected for enrichment analysis. The gene lists 

were used as input into the GSEA website (https://www.gsea-msigdb.org/) and were tested 

against the Gene ontology Biological Processes, Hallmark and Canonical Pathway 

databases. The top 10 significantly enriched (q-value <0.05) gene sets were downloaded 

from the website.  

 

Batch correction extended to 908 cell lines 

The ComBat estimates, pooled mean, variance and empirical Bayes adjustments (mean and 

standard deviation) for each batch based on the analysis of 168 cell lines common to both 

initial dataset were computed. The ComBat correction using these estimates was then 

applied to all screens, i.e. the union of the two initial datasets. Particularly, each individual 

cell line DPG was shifted and scaled gene-wise using the batch correction vectors outputted 

by ComBat. 

Further adjustments were then applied to all screens including quantile normalization, and 

the removal of either the 1st principal component of the joint datasets or the first two. Finally, 

DPGs for overlapping cell lines passing a similarity threshold (detailed below) were 

averaged. Across the three pre-processing methods the number of cell lines that matched 

their counterparts exactly after ComBat correction ranged from 51% - 86% (Figure 3b), 
suggesting that under all pre-processing methods there remained cell lines whose DPGs 

diverged between studies. For each of the cell lines that matched their counterpart as the 

first neighbor we considered their distances (1-wPearson) as a measure of the variability in 

distance profiles between DPGs of the same cell line across institutes. We called divergent 

DPGs those with a distance greater than the 95th percentile of distances from matching cell 

lines. For 16 cell lines with divergent DPGs across all three processing methods we selected 

the DPG from the screen with the highest quality to be included in the integrated datasets. 

As a quality metric we used the Null-normalized mean difference (NNMD, defined in the 
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main text) and took its consensual value across the three datasets (resulting from applying 

CERES, CCR-JACKS and CRISPRcleanR). 

 

Agreement between dependency profile clusterings and cell line tissue labels 

We selected 500 genes with the highest variance in the CERES ComBat integrated dataset 

and performed repeated 100 k-means clusterings cell lines using the high variance genes for 

each pre-processing and batch-correction method. For each clustering, we calculated the 

adjusted mutual information between the obtained clusters and the cell line tissue labels as 

specified in the annotation provided by the sample_info file of the DepMap_public_20Q2 

dataset20 using sklearn’s python function adjusted_mutual_info_score 

(https://scikit-learn.org/stable/).  

 

Recall of known gene relationships 

We assembled a set of functionally related gene pairs using paralogs identified by 

EnsemblCompara 33, protein-protein interactions identified by Li et al 34, and CORUM complex 

comemberships35. For a given dataset, for each pair of related genes, we calculated a 

Pearson correlation coefficient between those genes’ dependency scores across cell lines. 

We then binned each gene that appeared in the list of known gene relationships according to 

its mean gene score using 20 equally spaced bins. For pairs of genes in the related genes 

pairs, we chose one as the query gene and replaced its related partner with another 

randomly selected gene of similar gene mean, i.e. belonging to the same bin, excluding 

genes known to be related to the query gene. We calculated Pearson’s correlation 

coefficients between these randomly selected gene pairs to generate a null distribution, from 

which we calculated empirical p-values and Benjamini-Hochberg FDRs for known related 

gene pairs. Ensuring that the pairs of genes used in the null distribution have similar 

distributions of mean gene effect as the pairs of known related genes is necessary because 

variable screen quality can produce a high but artifactual correlation between any pair of 

common essential genes, and CORUM is highly biased towards common essentials. This is 

discussed further in the comparisons of batch corrections in Dempster et al 29. 

 

Unexpressed false positives 

We defined a gene as unexpressed in a cell line if the log2(Transcripts per million +1) of its 

DepMap expression was less than 0.01 46. Any score of an unexpressed gene in a cell line 

was called a false positive if it fell in the bottom 15% of gene scores for that cell line. 
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Identifying selective dependencies 

NormLRT and likelihood of normal distribution was calculated in R using the MASS 

package 47. For the skew t-distribution the st.mple function from the sn package was used to 

calculate the likelihood. If the fitting procedure failed different degrees of freedom were used 

iteratively until a solution was found. The degrees of freedom used in order were 

2,5,10,25,50 and 100.  

 

Systematic association test between molecular features and gene dependencies 

We performed a systematic two-sample unpaired Student’s t-test (with the assumption of 

equal variance between compared populations) to assess the differential essentiality of each 

gene across a dichotomy of cell lines defined by the status (present/absent) of each CFE in 

turn. We tested genes whose NormLRT values were greater than 200 in any integrated 

dataset. From these tests, we obtained p-values against the null hypothesis that the two 

compared populations had an equal mean, with the alternative hypothesis indicating an 

association between the tested CFE/gene-dependency pair. P-values were corrected for 

multiple hypothesis testing using Benjamini–Hochberg (method ‘fdr’ using the p.adjust 

function in R). We also estimated the effect size of each tested association using Cohen’s 

Delta (ΔFC), i.e. the difference in population means divided by their pooled standard 

deviations. 

 

Evaluating known selective dependencies 

A table of all annotated oncogene variants was downloaded from OncoKB32. The table was 

filtered first for genes that were (likely) oncogenic and alterations that were (likely) 

gain-of-function or switch-of-function. For each alteration, the DepMap public 20Q2 20 

mutation and fusion calls were used to identify which cell lines had the alteration. These cell 

lines were treated as positive controls for the gene in question, with all other cell lines 

treated as negative controls. Only oncogenes with at least one positive cell line were 

retained. For each integrated dataset, we calculated the ROC AUC between all positive 

oncogene-cell line pairs and negative pairs. Then, for each oncogene with at least two 

positive cell lines, we calculated the NNMD between its positive and negative cell lines. 

 

Identification of common essential genes via the 90th Percentile method 

The 90th percentile method 27 finds for each gene the cell line on the boundary of its 90th 

percentile least dependent cell lines. It then calculates the rank of that gene in that cell line, 

by sorting all the genes based on their dependency score in increasing order. A mixture of 
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two normal distributions is then fitted to the rank positions of all genes. Those genes with 

ranks below the crossover point of these two distributions are labeled as common essentials. 

 

ADaM method 

Binary depletion matrices for the integrated datasets were calculated as outlined in the next 

section and used with the ADaM method as described in Behan et al 2. The ADaM method 

determines the number of cell lines dependent on a gene required to call that gene a 

common essential. The number of cell lines is calculated by maximizing the tradeoff between 

true positive rate (using a set of known prior essential genes) and the deviance from the null 

expected rate (calculated using random permutations of the binary depletion matrix). 

Common essential genes were identified for each tissue separately (according to the cell line 

annotation from the Cell Model Passports43) and were then used as input into ADaM to 

determine pan-cancer common essential genes. 

 

Binary depletion calls 

Binary depletion calls were computed by considering each cell line DPG as a rank-based 

classifier of essential/non-essential genes11 (with gene rank positions determined by their 

fitness effect, i.e. average depletion fold-change of targeting single guide RNAs abundance 

at the end of the assay with respect to plasmid counts). 

The fitness effect threshold was then fixed as that corresponding to the largest rank position 

r guaranteeing a false discovery rate (FDR) < 5%, when the predicted essential genes are 

those with a rank position ≤ r. This allowed us to assign to each gene in each cell line, in 

each of the two datasets, a binary dependency score.  

 

To identify significantly depleted genes for a given cell line at a 5% FDR, we ranked all the 

genes in the cell line DPG in increasing order based on their depletion log fold-changes. We 

used the ranked list to calculate the precision curve using a set of prior known essential (E) 

and non-essential (N) genes, respectively, derived from Hart et al 11. 

To estimate the rank position corresponding to the 5% FDR threshold we calculated for each 

rank position k, a set of predicted essential genes P(k) = {s ∈ E ∪ N: r(s) ≤ k }, with r(s) 

indicating the rank position of s, and the corresponding positive predictive value (or 

precision) PPV(k) as: 
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PPV(k)=|P(k)∩E|/|P(k)| 

We then determined the largest rank position k* with PPV(k*) ≥ 0.95 (equivalent to a 

FDR ≤ 0.05). The 5% FDR logFCs threshold F* was defined as the logFCs of the gene s 

such that r(s) = k*. We called all genes with a logFC < F* as significantly depleted at 5% 

FDR. 

Binary dependency matrices were defined as gene by cell lines matrices with non null 

entries corresponding to significant dependency genes at 5% FDR, for each cell line, i.e. 

column.  

Positive controls for common essentials  

To generate sets of prior known common essential genes we downloaded gene sets from 

MsigDB (v7.2) using the R package qusage. The gene sets used were from KEGG were 

KEGG_SPLICEOSOME, KEGG_RIBOSOME, KEGG_PROTEASOME, 

KEGG_RNA_POLYMERASE and KEGG_DNA_REPLICATION. For the histones gene set 

we combined two reactome gene sets REACTOME_HATS_ACETYLATE_HISTONES and 

REACTOME_HDACS_DEACETYLATE_HISTONES as well as the curated histones gene 

set from 2. 

 

Negative controls for common essentials 

We compiled a set of negative controls for the common essential genes as those genes that 

were not expressed across all cell lines. We defined a gene as unexpressed across the 

panel of cell lines using the log2(Transcripts per million +1) of its CCLE expression 20 and the 

90th percentile method (The input into the ADaM2 package (available at 

https://github.com/DepMap-Analytics/ADAM2 ) performing the 90th percentile method was 

-1*log2(TPM+1) to ensure correct ranking). A gene defined as constitutively unexpressed 

was therefore one that was still lowly expressed in its highly ranked (90th percentile) most 

expressed cell line. 

 

Downsampling for batch correction sample sizes 

We downsampled 50 times the overlapping cell lines at different levels between 5% 

and 90%. Random samples were generated using probabilities of selecting a cell line based 
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on the relative proportions of each cell line lineage in the overlapping data set. Using the 

downsampled set of overlapping cell lines ComBat was used to calculate the batch 

adjustment vectors. The batch adjustment vectors were then applied to all 1,074 cell lines. 

The correlation of a cell lines fold changes batch corrected using the downsampled datasets 

and the full 168 overlapping cell lines was calculated and compared to the correlation with 

no batch correction.  

To evaluate the batch correction we also used the average silhouette width as a measure of 

clustering. We calculated the average silhouette width for each batch corrected data set 

(using samples of the overlapping cell lines) using the institute of origin as the cluster label. 

The average silhouette width is 1 for perfect clustering (or complete separation of cell lines 

by the institute of origin) with 0 indicating random performance of the clusters.  
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