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Abstract

Leveraging large-scale electronic health record (EHR) data to estimate survival curves for clinical events

can enable more powerful risk estimation and comparative effectiveness research. However, use of EHR data

is hindered by a lack of direct event times observations. Occurrence times of relevant diagnostic codes or

target disease mentions in clinical notes are at best a good approximation of the true disease onset time.

On the other hand, extracting precise information on the exact event time requires laborious manual chart

review and is sometimes altogether infeasible due to a lack of detailed documentation. Current status labels

– binary indicators of phenotype status during follow up – are significantly more efficient and feasible to

compile, enabling more precise survival curve estimation given limited resources. Existing survival analysis

methods using current status labels focus almost entirely on supervised estimation, and naive incorporation

of unlabeled data into these methods may lead to biased results. In this paper we propose Semi-supervised

Calibration of Risk with Noisy Event Times (SCORNET), which yields a consistent and efficient survival curve

estimator by leveraging a small size of current status labels and a large size of imperfect surrogate features.

In addition to providing theoretical justification of SCORNET, we demonstrate in both simulation and real-

world EHR settings that SCORNET achieves efficiency akin to the parametricWeibull regressionmodel, while

also exhibiting non-parametric flexibility and relatively low empirical bias in a variety of generative settings.
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1 Introduction

The Electronic Health Record (EHR) has in recent years become an increasingly available source of data for

clinical and translational research (Kohane and others, 2012; Hripcsak and Albers, 2012; Miotto and others, 2016).

Comprising heterogeneous clinical encounters including diagnostic and procedural billing codes, lab tests, pre-

scriptions, and free text clinical notes for millions of patients, these rich data offer abundant opportunities for

in silico epidemiological analysis. One application that has garnered recent interest is estimation of population

disease risk within EHR patient cohorts, which can enable more powerful and precise estimation of real-world

disease risks as well as comparative effectiveness analysis of alternative treatment strategies (Hodgkins and

others, 2017; Dean and others, 2003; Liu and others, 2018; Panahiazar and others, 2015; Steele and others, 2018).

Several studies have had success estimating time to death within rule-defined disease cohorts (Panahiazar and

others, 2015; Steele and others, 2018). However, estimating the temporal risk of developing a disease is a more

challenging task due to EHR’s lack of direct observations of either disease status or the timing of disease on-

set. Convenient proxies of disease status or onset time based on readily available features such as International

Classification of Disease (ICD) codes often exhibit low specificity and systematic temporal biases, potentially

yielding highly biased disease risk estimators if used as event time labels (Cipparone and others, 2015; Uno and

others, 2018). On the other hand, extracting precise information on disease outcomes requires labor-intensive

manual chart review, which is particularly challenging for event times since the event may occur outside of the

hospital system and only be mentioned during follow-up visits. It is thus only practically feasible to annotate

the current status Δ = � () ≤ �) of the event time ) , where � is the follow up time.

In this paper, we consider the problem of estimating the disease risk � (C) = %() ≤ C) when only a small

number of labels onΔ and a large quantity of unlabeled EHR featuresW, including proxies of) , are available. Su-

pervised survival curve estimation with current status data on {Δ , �} is well established in the statistical liter-

ature with several available parametric, semi-parametric and non-parametric procedures (Vardi, 1982; Huang,
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1996; van der Laan and Robins, 1998; van der Laan and Jewell, 2003; Lin and others, 2019, e.g.). For example,

van der Laan and Robins (1998) proposed a non-parametric, locally efficient estimator via inverse probability

of censoring weighting (IPCW), assuming that (1) ) and � are conditionally independent given some informa-

tive baseline covariates Z0 ⊂ W (e.g. age, sex, etc.) and (2) a consistent estimator for the conditional density of

� | `0 is available. However, these existing estimators do not leverage unlabeled EHR feature information such

as time to first surrogate ICD code, which may greatly improve risk estimation precision.

SinceWmaybehighly predictive of) , the estimationof ((C) canpotentially be improvedvia semi-supervised

learning (SSL) leveraging both the small set of Δ observations in the labeled set and the EHR featuresW in the

unlabeled set. SSL has been shown to significantly mitigate bias and/or improve efficiency for various risk pre-

diction applications (Chai and others, 2017; Liang and others, 2016; Bair and Tibshirani, 2004; Golub and others,

1999). For example, several studies employ semi-parametric models to impute event times in the unlabeled

set for subsequent input into an outcome survival model alongside labeled data (Chai and others, 2017; Liang

and others, 2016; Zhao and others, 2014; Uno and others, 2018; Hassett and others, 2017; Chubak and others, 2012;

Choi and others, 2015; Kaji and others, 2019; Ruan and others, 2019; Ahuja and others, 2020a). While such imputa-

tion approaches may improve efficiency under correct specification of the imputation model, they are subject

to significant bias if the imputation model is misspecified. In addition, these existing methods do not allow for

use of current status labels for training. Other general augmented inverse probability weightingmethods in the

missing data literature (Seaman and White, 2013; Rotnitzky and Robins, 2014, e.g.) are not directly applicable

here since the probabilities of labels being observed tend to zero in the SSL setting.

We address this shortcoming by proposing Semi-supervised Calibration of Risk with Noisy Event Times

(SCORNET) for estimation of ((C). SCORNET utilizes current status labels while also employing a robust semi-

supervised imputation approach on the extensive unlabeled set to maximize survival estimation efficiency. To

mitigate imputation bias andmaximize efficiency gain from the unlabeled data, SCORNET utilizes a highly flexi-
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ble semi-non-parametric kernel regressionmodel with EHR features as covariates, which ensures the validity of

the resulting risk estimator without requiring the imputation model to hold. In addition to providing theoret-

ical justifications for the SCORNET estimator, we illustrate via simulation studies that SCORNET substantially

outperforms existing methods with regards to the bias-variance tradeoff. The rest of the paper is organized

as follows. In Section 2, we detail the SCORNET procedure along with its associated inference procedures. In

Section 3, we report risk estimation performance relative to existing methods in diverse simulation studies. To

further illustrate the utility of SCORNET in clinical applications, we apply it to a real-world EHR study estimat-

ing the risk of heart failure among rheumatoid arthritis patients in Section 4. Finally, in Section 5 we briefly

discuss the strengths, weaknesses, and potential applications of SCORNET.

2 Methods

2.1 Setup

Let) denote the event time for whichwe are interested in estimating a cumulative distribution function � (C) =

%() ≤ C) and survival function ((C) = 1− � (C). In the EHR study we do not observe ) but rather Δ = � () ≤ �)

for a small labeled subset, where � is the follow up time with finite support [0, g2]. For all subjects, we also

observe a set of baseline covariates `0 and longitudinal EHR features `. Since codes used in the EHR are often

highly sensitive but not specific, there often exists some filter variable F ∈ {0, 1} such thatΔ 8 | (F8 = 0,W8) = 0

almost surely, whereW8 = (`T
0,8 , `

T
8 )T. Moreover, we assume that (), `)� | `0.We assume that data for analysis

consist of a small set of = current-status-labeled observations randomly selected among those with F = 1 along

with a larger set of # unlabeled observations: D = {D8 = (�8 , +8Δ 8 ,W8 , +8 , F8)T, 8 = 1, ..., #} = L ∪ U, where

L = {(�8 ,Δ 8 ,W8 , 1, 1)T : F8 = 1, +8 = 1, 8 = 1, ..., =} and U = {(�8 , 0,W8 , 0, F8)T : +8 = 0, 8 = = + 1, ..., #} with

log(#)/log(=) → a0 > 3/2 as =→∞.
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Since the censoring� may depend on `0, we follow the IPCW strategy of van der Laan and Robins (1998) to

weight observations by

lC ,1 (� | `0) =
 1 (� − C)
52 (C | `0)

where  1 (B) =  (B/1)/1, 52 (C | `0) = 3�2 (C | `0)/3C, �2 (C | `0) = %(� ≤ C | `0),  (·) is some symmetric

density function, and 0 < 1 = $ (=−a) is the bandwidth thereof with a ∈ (1/5, 1/3]. IPCW enables consistent

estimation of functionals of ) ≤ C andW since for any reasonable choice of function @(·) and 0, 3 ∈ {0, 1},

�
{
Δ38 @(W8)F08 lC ,1 (�8 | `0,8)

}
= �

{
� ()8 ≤ C)3@(W8)F08

}
+$ (12). (1)

The IPCW estimator for c(C) = %()8 ≤ C | F8 = 1) proposed by van der Laan and Robins (1998) essentially

corresponds to

(C) =
∑=
8=1 F8Δ 8lC ,1 (�8 | `0,8)∑=
8=1 F8lC ,1 (�8 | `0,8)

with 52 (C | `0) in lC ,1 (�8 | `0,8) replaced by a consistent estimator that converges faster than =−1/4, which

is not difficult to achieve under reasonable modeling assumptions since �8 | `0,8 can be estimated using the

full data D. To this end, we propose to derive an estimator for the conditional density 52 (C | `0) = _2 (C |

`0,8)(2 (C | `0,8) by imposing a semi-parametric model for� | `0. Althoughmany commonly employedmodels

can be used since once again � is fully observed for all patients, we illustrate our proposal by focusing on the

Cox proportional hazards model (Cox, 1972) under which

_2 (C | `0,8) = _02 (C)4$
T`0,8 and (2 (C | `0,8) ≡ 1 − �2 (C | `0,8) = exp

{
−Λ02 (C)4$

T`0,8
}
, (2)

where _2 (C | `0,8) is the conditional hazard function of �8 | `0,8 , _02 (C) is the unknown baseline hazard func-

tion, Λ02 (C) =
∫ C

0 _02 (B)3B, and $ is the vector of unknown covariate effects.

2.2 SCORNET Estimation

As outlined in Figure 1, SCORNET consists of three steps: (1) estimating the conditional censoring distribution

ℎ (C | `0) usingD; (2) fitting an imputation workingmodel for c(C | W) ≡ %() ≤ C | W, F = 1) using L, denoting
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the estimate of c(C | W) as (C | W); and (3) estimating ((C) by marginalizing (C | W)F +Δ (1 − F) = (C | W)F via

IPCW.

Figure 1: Schematic of the SCORNET algorithm.

2.2.1 Step 1: Estimate 52 (C | `0) Under the Cox Model for � | `0

To estimate 52 (C | `0), we fit the Coxmodel (2) to the full dataD to obtain the partial likelihood estimator $̂ for

$. We subsequently estimate Λ0(C) and _02 (C) respectively as the standard Breslow estimator Λ̂02 (C) and the

kernel-smoothed Breslow estimator _̂02 (C) (Basha and Hoxha, 2019), where

Λ̂02 (C) =
#∑
9=1

� (� 9 ≤ C)∑#
8=1 � (�8 ≥ � 9)exp

(
$̂T`0,8

) , _̂02 (C) =
#∑
9=1

 0#
(
� 9 − C

)∑#
8=1 � (�8 ≥ � 9)exp

(
$̂T`0,8

) ,
and 0# = $ (#−a2 ) with a2 ∈ (1/5, 1/3]. We then obtain

_̂2 (C | `0) = _̂02 (C)4$̂
T`0,8 and (̂2 (C | `0) = exp

{
−Λ̂02 (C)4$̂

T`0,8
}
,

and we estimate 52 (C | `0,8) as 5̂2 (C | `0,8) = _̂2 (C | `0,8)(̂2 (C | `0,8). Following standard asymptotic results

for non-parametric kernel regression (Pagan and Ullah, 1999), it is not difficult to show that sup`0,C
| 5̂2 (C |
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`0) − 52 (C | `0) | = $ ?{log(#)1/2(#0# )−1/2} = >? (). We denote the resulting estimate for the censoring

weight as l̂1= (C | `0,8) =  1= (�8 − C)/ 5̂2 (C | `0,8).

2.2.2 Step 2: Estimate an Imputation Model c(C | W8) ≡ % ()8 ≤ C | W8 , F8 = 1)

To leverage the unlabeled data, we fit a flexible imputation workingmodel

c(C | W8) = 6
{
"(C) + #0(C)T ®̀ 0,8 + #(C)T`8

}
= 6

{
) (C)T ®W8

}
(3)

where `8 denotes the EHR surrogate features, ) (C) =
(
U(C), #0(C)T, #(C)T

)T, and ®W8 =
(
1, ®̀T

0,8 , `
T
8

)T

. Under (3),

%()8 ≤ C | W8 , F8 = 1) = 6
{
) (C)T ®W8

}
, and hence we may estimate ) (C) as )̂ (C) =

(
Û(C), #̂0(C)T, #̂(C)T

)T

, the

solution to the IPCW estimating equation evaluated with L,

=∑
8=1

l̂C ,1= (�8 | `0,8)F8 ®W8
{
Δ 8 − 6

(
)T ®W8

)}
= 0,

where 1= = $ (=−a) with a ∈ (1/5, 1/2). In practice, 1= can be chosen via either standard cross-validation or

heuristic plug-in values. For a future observationwith filter statusF8 = 1 and covariatesW8 , we impute � ()8 ≤ C)

as the conditional risk ĉ(C | W8) = 6
{
)̂ (C)T ®W8

}
.

It is not difficult to show that )̂ (C) converges in probability to )̄ (C), the solution to the limiting estimating

equation

�

[
®W8

{
� ()8 ≤ C) − 6()T ®W8)

}
| F8 = 1

]
= 0,

which ensures that

� {c̄(C | W8) | F8 = 1} = %()8 ≤ C | F8 = 1), where c̄(C | W8) = 6{)̄ (C)T ®W8}, (4)

regardless of the adequacy of the imputation model (3).

2.2.3 Step 3: Estimate � (C) by Marginalizing Imputed Risks

Finally, we marginalize the imputed values ĉ8C = ĉ(C | W8) ∀ F8 = 1 and Δ 8 = 0 ∀ F8 = 0 to estimate � (C). Since

F8 depends on �8 , we again employ IPCW to marginalize ĉ8CF8 + Δ 8 (1 − F8) = ĉ8CF8 and thereby construct our
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final estimator for � (C):

�̂ (C) =
∑#
8=1{ĉ8CF8 + Δ 8 (1 − F8)}l̂C ,0# (�8 | `0,8)∑#

8=1 l̂C ,0# (�8 | `0,8)
=

∑#
8=1 ĉ8CF8l̂C ,0# (�8 | `0,8)∑#
8=1 l̂C ,0# (�8 | `0,8)

.

2.3 Inference for �̂ (C)

Following standard theory for non-parametric kernel regression (Pagan and Ullah, 1999), we show in the Sup-

plementary Materials that �̂ (C) → %()8 ≤ C, F8 = 1) + %()8 ≤ C, F8 = 0) = %()8 ≤ C) = � (C) in probability

under mild regularity conditions and correct specification of the censoring model regardless of the adequacy

of the imputation model. Here, we note that for any C ∈ [0, g2], 0 = %(Δ 8 = 0 | F8 = 0, �8 = C,W8) implies that

%()8 ≤ C | F8 = 0) = 0. Furthermore,

(=1=)1/2
{
�̂ (C) − � (C)

}
=

(
1=

=

)1/2 =∑
8=1

l̂C ,1= (�8 | `0,8)F8 {Δ 8 − c̄(C | W8)} + >? (1)

=

(
1=

=

)1/2 =∑
8=1

lC ,1= (�8 | `0,8)F8 {Δ 8 − c̄(C | W8)} + >? (1)

since supC | 5̂2 (C | `0) − 52 (C | `0) | = >? (). It follows that (=1=)1/2{�̂ (C) − � (C)} is asymptotically normal with

mean 0 and variance

f2(C) = '( )�{V(C | `0,8)/ 52 (C | `0,8)}, (5)

where

V(C | `0,8) = � [F8{� ()8 ≤ C) − c̄(C | W8)}2 | `0,8]

and '( ) =
∫
 (G)23G. Our derivation for the asymptotic distribution of �̂ (C) can effectively ignore the vari-

ability associated with the estimation of censoring weights, which simplifies the asymptotic variance f2(C).

Importantly, f2(C) decreases as the imputation model approximates c(C | W8) better since V(C | `0,8) =

� [F8{� ()8 ≤ C) − c(C | W8)}2 | `0,8] + � [F8{c(C | W8) − c̄(C | W8)}2 | `0,8] decreases. To estimate f2(C)

in practice, one may construct a plug-in estimator,

f̂2(C) = 1=
=

=∑
8=1

l̂C ,1= (�8 | `0,8)2F8
{
Δ 8 − 6

(
)̂ (C)T ®W8

)}2
.
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By contrast, the supervised IPCW estimator that incorporates filter negative patients takes the form

�̂ (C) =
∑#
8=1{ĉ(C)F8 + Δ 8 (1 − F8)}l̂C ,0# (�8 | `0,8)∑#

8=1 l̂C ,0# (�8 | `0,8)
=

∑#
8=1 ĉ(C)F8l̂C ,0# (�8 | `0,8)∑#

8=1 l̂C ,0# (�8 | `0,8)
.

The asymptotic variance of (=1=)1/2{�̂ (C) − � (C)} is then f2(C) = '( )�{V(C | `0,8)/ 52 (C | `0,8)}, where

V(C | `0,8) = �
[
F8{� ()8 ≤ C) − c(C)}2 | `0,8

]
.

The variance f2(C) is equivalent to that of SCORNET if and only if the feature setW is uninformative for ) (i.e.

)W). Supervised IPCW is otherwise less efficient, with relative efficiency controlled by the relative magnitudes

of the marginal error � [{� ()8 ≤ C) − � (C)}2 | F8 = 1, `0,8] and the conditional error � [{� ()8 ≤ C) − c̄(C |

W8)}2 | F8 = 1, `0,8].

3 Simulation Study

We conduct extensive simulation experimentation to evaluate the finite sample performance of the proposed

SCORNET estimator in realistic settings with = ∈ {100, 200} observed labels within the set of filter-positive

patients, defining the filter to have 99% sensitivity and 88% specificity for Δ . We compare SCORNET to three

existing survival function estimators with current status data: 1) parametric Weibull Accelerated Failure Time

(AFT) regression with interval event times (Lin and others, 2019), 2) semi-parametric Cox Proportional Hazards

regression with interval event times and Breslow baseline hazard estimation (Huang, 1996; Cox, 1972; Breslow,

1972), and 3) non-parametric IPCW estimation (van der Laan and Robins, 1998). We incorporate the filter in the

Weibull and Cox models by setting Δ 8 | (F8 = 0) = 0 and weighting the = labeled filter-positive patients by

1
=

∑#
8=1 F8 . Weibull and Cox are implemented using the icenReg package in R, while IPCW is implemented per

the algorithm detailed in van der Laan and Robins (1998), estimating � | `0 using D under the Cox model. We

note that estimating the censoring distribution using L yields similar asymptotic performance to using D, but

in finite sample settings the latter offers higher efficiency.
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Setting `0 ∼ � | `0 ∼ ) | `0 ∼ ` ∼

1 Unif(−1, 1) Weibull
(
104−0.5`0 , 3

2

)
Weibull

(
154−0.3`0 , 5

2

)
Normal{) + 1, f(�)/2}

2 Unif(−1, 1) Weibull
(
104−0.5`0 , 3

2

)
Weibull

(
15, 5

2

)
Normal{) + 1, f(�)/2}

3 Unif(−1, 1) Weibull
(
104−0.5`0 , 3

2

)
Weibull

(
154−0.3`2

0 , 5
2

)
Normal{) + 1, f(�)/2}

4 Unif(−1, 1) Weibull
(
104−0.5`0 , 3

2

)
Logistic (15 − 4`0, 3) Normal{) + 1, f(�)/2}

5 Unif(−1, 1) Weibull
(
10, 3

2

)
Weibull

(
154−0.3`0 , 5

2

)
Normal{) + 1, f(�)/2}

6 Unif(−1, 1) Weibull
(
104−0.5`2

0 , 3
2

)
Weibull

(
154−0.3`0 , 5

2

)
Normal{) + 1, f(�)/2}

Table 1: Generative parameters employed in our simulation study.

Weconsider 6 diverse generativemechanisms as detailed inTable 3, including caseswhereWeibull-distributed

accelerated failure time of ) | `0, proportional hazards of ) | `0, and proportional hazards of � | `0 are re-

spectively violated, as well as cases where SCORNET’s imputation model is and is not misspecified. In settings

1, 2, and 5, we consider various cases where SCORNET and all comparator methods are correctly specified. In

setting 1 we consider the specific case where � and ) both depend on `0, and both � | `0 and ) | `0 are

Weibull-distributed satisfying accelerated failure time and proportional hazards. In setting 2, by contrast, we

consider a case where )`0 to assess robustness to over-parametrization of this relationship, and in setting 5

we consider a case where �`0 to evaluate robustness to over-parametrization thereof. In settings 3 and 4 we

assess the benefit of SCORNET and IPCW’s robustness to the distribution of ) | `0 when this distribution sat-

isfies neither Weibull accelerated failure time nor proportional hazards. We evaluate SCORNET’s sensitivity to

misspecification of the imputation model in settings 1, 3, and 5, as compared to correct specification thereof

in settings 2 and 4. Finally, in setting 6 we assess the sensitivity of SCORNET and IPCW to misspecification of

the conditional censoringmodel� | `0. For each given configuration, we compute the empirical bias, standard

error, and root mean squared error (RMSE) of all estimators for � (C) based on their average performance on
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500 simulated datasets evaluated at 100 equally-spaced time points C ∈ [&� (0.1) + 1=, &� (0.9) − 1=], where

& denotes the quantile function of � under the configuration. We used plug-in bandwidths of 1= = B̂(�)=−1/4

and 0# = B̂(�)#−1/4 for the imputation (Step 2) and marginalization (Step 3) steps of SCORNET respectively,

where B̂ is the empirical standard deviation of observed �. We present the performance of the estimators av-

eraged over the selected time points using = = 200 labels in Figure 2. The performance at each time point can

be found in Supplementary Figure 1, and time-averaged performance using = = 100 labels can be found in

Supplementary Table 1 of the Supplementary Materials.

Figure 2: Time-averaged empirical absolute biases (left), standard errors (second from left), root relative efficiencies

(second from right), and relative RMSEs (right) of the Weibull Accelerated Failure Time (red), Cox Proportional Hazards

w/ Breslow baseline (blue), supervised IPCW (green), and SCORNET estimators using weakly informative (purple) and

strongly informative (orange) surrogates, in various simulated settings with = = 200 observed current status labels.
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As Figure 2 demonstrates, imputing using a strongly informative feature ` (SCORNET-Strong) results in

consistently higher efficiency than just using the weakly informative baseline `0 (SCORNET-Weak), which in

turn is markedly more efficient than not leveraging the unlabeled set at all (IPCW). SCORNET makes minimal

assumptions regarding the distribution of ) | `0, settling for non-parametric efficiency in exchange for en-

hanced flexibility. By contrast, the Weibull regression model fully parametrizes ) | `0, and the Cox model

assumes proportional hazards thereof, increasing efficiency at the expense of bias in the case of misspecifica-

tion. As expected, Weibull consistently achieves higher empirical efficiency than Cox, which in turn is more

efficient than IPCW across settings. Notably, SCORNET consistently achieves empirical efficiency comparable

to Weibull and significantly higher than Cox despite being far more flexible than both, again highlighting the

efficiency gained by leveraging auxiliary information to impute unobserved risks. At the same time, SCORNET is

much less susceptible tomodel misspecification bias thanWeibull, as demonstrated by the latter’s significantly

higher bias and RMSE in Setting 4. Indeed, SCORNET achieves relatively lowmean absolute bias across settings,

with MSE apparently dominated by variance rather than bias in the setting of 100-200 labels. Consistent with

the theory, SCORNET is robust to misspecification of the imputation model in settings 1, 3, and 5, achieving

equivalently insignificant bias as in setting 2 andmarginally but not meaningfully higher bias than in setting 4.

That said, correctness of the imputation model in settings 2 and 4 does not yield any meaningful change in rel-

ative efficiency, likely because inherent variability functionally dominates imputation model bias given so few

labels. Reassuringly, SCORNET (and IPCW) appear insensitive to misspecification of � | `0 in setting 6, achiev-

ing functionally equivalent bias to the correctly-specified Weibull and Cox models. Altogether, these results

corroborate the assertion that SCORNET’s semi-supervised utilization of informative feature data to impute

risks in the unlabeled set improves estimation efficiency without introducing bias regardless of the validity of

the imputation model. Moreover, they suggest that SCORNET is particularly valuable in settings where (1) flex-
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ibility is desired with regard to the distribution of ) | `0, and (2) there exists a large set of unlabeled patients

with associated EHR data – both commonplace in retrospective observational studies.

Figure 3: Empirical coverage probabilities averaged over time (left) and plotted over time (right) of SCORNET-Strong’s 95%

confidence intervals constructed with the bootstrap (red) and plug-in (blue) standard error estimators in various simu-

lated settings with = = 200 observed current status labels. See Table 1 for details of the generative mechanism employed

in each setting.

To assess the finite sample performance of the proposed interval estimation procedures, we obtain standard

error estimates both using the proposed plug-in estimator f̂(C) and via bootstrap with 500 replicates. In Figure

3 we demonstrate empirical coverage probabilities of SCORNET’s 95% Wald confidence intervals constructed

using each standard error estimator, both averaged over the selected timepoints (left) and at each timepoint

(right). Reassuringly, we find that the 95% confidence intervals using both plug-in and bootstrap estimators

achieve nearly 95%mean coverage across settings. Coverage only drops below 90% at the tails of the event time
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support due to moderately increased bias from kernel smoothing thereabout. The plug-in estimator achieves

marginally lower coverage than the bootstrap estimator at the right tail due to underestimation of the true

standard error, likely because of overfitting of the imputation model given low local censoring density (and

thus low effective #). Notably, we do not observe this trend in setting 4, wherein correct specification of the

imputation model obviates overfitting. Thus, we posit that the plug-in estimator can be reliably used for fi-

nite sample problems with = ∈ [100, 200] labels as long as the conditional censoring density 52 (� | `0) is

sufficiently high and the timepoints evaluated are sufficiently far from the tails of the event time support.

4 Application to Assessing Heart Failure Risk Among Rheumatoid Arthritis

Patients

Rheumatoid arthritis (RA), a chronic inflammatory disease that affects approximately 1% of the general popula-

tion, is associated with dramatically increased risk of heart failure (HF) morbidity and mortality (Kaplan, 2010;

Nicola and others, 2005, 2006; Ahlers and others, 2020). One study estimated that RA patients have a 1.9-fold life-

time risk of developing HF compared to matched RA-negative controls (Nicola and others, 2005), while another

estimated that HF accounts for 13% of excess mortality among RA patients (Nicola and others, 2006). Ongoing

interest lies in estimating the risk of developing HF subtypes in RA cohorts and quantifying the risk modifying

effect of various RA treatments (Ahlers and others, 2020). Due to the increased availability of electronic health

record (EHR) data, it is now possible to assess HF risk for a broader RA population using these data. For ex-

ample, at Mass General Brigham we previously established an EHR cohort of #0 = 16, 358 RA patients (Huang

and others, 2020). This large RA cohort can potentially be used to study the longitudinal risk of HF among RA

patients.

However, such analysis is not straightforward as HF status is not readily available within the RA cohort. We

propose to estimate HF risk among RA patients by leveraging (1) = current status labels on HF status obtained
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via manual chart review, and (2) informative yet unlabeled EHR data, including time to first ICD code for HF,

as surrogate variables `. We estimate both the age-specific HF risk, �age(·), and the risk of developing HF after

the patient’s incident ICD code for RA (714), �RA+(·), among patients with at least 6 months of follow up whose

incident RA codes occur after the age of 16 to select for adult-onset as opposed to juvenile RA. Among filter-

positive patients, defined as having at least 1 ICD code for HF, we have = = 300 labels on censoring time HF

status Δ for age-specific HF risk, and we have = = 126 for post-RA HF risk. We let the baseline covariates `0

include sex and decade of first EHR event for �age(·), and sex, decade of first RA code, and age at first RA code for

�RA+(·). We obtain HF risk estimators based on SCORNET as well as the aforementioned comparator estimators.

For the imputation model in Step 2 of SCORNET, we consider three EHR-derived surrogate risk predictors for

`: (1) the predictedΔ based on the unsupervisedMultimodal Automated Phenotyping (MAP) algorithm, which

uses the total counts of HF ICD codes and mentions of HF in clinical notes, as well as the total count of all ICD

codes as a healthcare utilization measure (Liao and others, 2019), (2) the predicted Δ based on the unsupervised

Surrogate-guided Ensemble Latent Dirichlet Allocation (sureLDA) algorithm, which leverages the features used

in MAP as well as 121 additional manually-selected EHR features including counts of relevant medications,

ICD codes, and concept unique identifiers (CUIs) in clinical notes (Ahuja and others, 2020b); and (3) the time to

first HF ICD code. As in our simulation, we select plug-in bandwidths of 1= = B̂(�)=−1/4 and 0# = B̂(�)#−1/4

for the imputation and marginalization steps of SCORNET respectively, and we evaluate risk at 100 timepoints

C ∈ [&� (0.1) + 1=, &� (0.9) − 1=]. We again compare the performance of SCORNET to that of Weibull, Cox, and

IPCW, incorporating the filter in theWeibull and Coxmodels by propensityweighting aswe do in the simulation

study.

In Figure 4, we show the estimated HF risk curves along with their standard errors. Reassuringly, all meth-

ods appear to agree rather closely for estimation of both age-specific HF risk and HF risk after RA diagnosis.

For the latter quantity, however, Weibull and Cox appear to underfit while IPCW appears to overfit relative to
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Figure 4: Estimated age-specific and post-RA cumulative risks of heart failure (top) and bootstrap standard errors thereof

(bottom) over time of theWeibull Accelerated Failure Time (red, short-long-dashed), Cox Proportional Hazardsw/Breslow

baseline (blue, dot-dashed), supervised IPCW (green, dashed), and SCORNET (purple, solid) estimators.

the SCORNET estimator, which appears to achieve a reasonable middle ground. Moreover, SCORNET once again

attains standard errors comparable to those of the Weibull estimator and meaningfully lower than those of the

Cox and IPCW estimators. This suggests that while the Weibull and Cox models potentially fail to capture the

complexity of the post-RA HF risk function, and IPCW is too unstable for a limited labeled set of size = = 126,

SCORNET offers an attractive balance of efficiency and flexibility and is thus well conditioned for such a sce-

nario. As shown in Figure 5, averaged over the selected timepoints, the root relative efficiency of SCORNET

is 1.11, 2.55, and 3.31 compared to the Weibull, Cox, and IPCW estimators respectively for estimation of age-

specific risk, and 1.34, 2.32, and 3.85 respectively for estimation of HF risk after RA diagnosis. Once again, the

fact that SCORNET achieves efficiency moderately higher than the relatively inflexible Weibull model and sig-
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nificantly higher than the Cox and IPCW estimators reflects the value of leveraging available information from

the EHR to bolster risk estimation efficiency.

Figure 5: Time-averaged bootstrap standard errors (left) and empirical root relative efficiencies (right) of the Weibull

Accelerated Failure Time (red), Cox Proportional Hazards w/ Breslow baseline (blue), IPCW (green), and SCORNET (purple)

estimators for estimation of (1) age-specific HF risk (left), and (2) HF risk after RA diagnosis (right), among RA patients in

the Partners EHR database.

5 Discussion

By leveraging a sizeable unlabeled data set containing imperfect surrogates of the true event times and a small

set with observed current status labels, the SCORNET estimator serves as a robust and efficient alternative

to existing model-free survival estimators with current status data. The semi-supervised nature of SCORNET

makes it well-conditioned to EHR-based survival estimation in settings where only a limited number of labels

are available or readily obtainable. Moreover, by only requiring current status labels rather than the precise
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timing of event onset, SCORNET greatly reduces the burden of chart review and increases the feasibility of

studying disease risk using EHR data.

To allow for covariate-dependent censoring, which is frequently present in observational settings, SCOR-

NET requires additional assumptions on the distribution of � | `0. Although we choose the proportional haz-

ards model for illustration, any standard semi-parametric model will yield similar properties for the resulting

estimator. Since {�, `0} are observed for all subjects, one can potentially allow for more flexible (i.e. non-

parametric) censoring models. That said, our simulation results suggest that SCORNET is relatively insensitive

to misspecification of the model for � | `0. Even under mild misspecification, it achieves consistently lower

mean squared errors than existing estimators.

When interest lies in assessing how risk differs across different patient sub-populations, it is straightfor-

ward to extend SCORNET to estimate subgroup-specific risks for a small number of subgroups. However, future

research is warranted to estimate covariate-specific risks for a general set of covariates.

6 Software

An R package, including a sample use case and complete documentation, is available at

https://cran.r-project.org/web/packages/SCORNET/index.html. Source code can be found at

https://github.com/celehs/SCORNET.
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