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Abstract 16 

Halogenation is a recurring feature in natural products, especially those from marine organisms. The selectivity 17 

with which halogenating enzymes act on their substrates renders halogenases interesting targets for biocatalyst 18 

development. Recently, CylC – the first predicted dimetal-carboxylate halogenase to be characterized – was 19 

shown to regio- and stereoselectively install a chlorine atom onto an unactivated carbon center during 20 

cylindrocyclophane biosynthesis. Homologs of CylC are also found in other characterized cyanobacterial 21 

secondary metabolite biosynthetic gene clusters. Due to its novelty in biological catalysis, selectivity and ability 22 

to perform C-H activation, this halogenase class is of considerable fundamental and applied interest. However, 23 

little is known regarding the diversity and distribution of these enzymes in bacteria. In this study, we used both 24 

genome mining and PCR-based screening to explore the genetic diversity and distribution of CylC homologs. 25 

While we found non-cyanobacterial homologs of these enzymes to be rare, we identified a large number of genes 26 

encoding CylC-like enzymes in publicly available cyanobacterial genomes and in our in-house culture collection 27 

of cyanobacteria. Genes encoding CylC homologs are widely distributed throughout the cyanobacterial tree of 28 

life, within biosynthetic gene clusters of distinct architectures. Their genomic contexts feature a variety of 29 

biosynthetic partners, including fatty-acid activation enzymes, type I or type III polyketide synthases, 30 

dialkylresorcinol-generating enzymes, monooxygenases or Rieske proteins. Our study also reveals that dimetal-31 

carboxylate halogenases are among the most abundant types of halogenating enzymes in the phylum 32 

Cyanobacteria. This work will help to guide the search for new halogenating biocatalysts and natural product 33 

scaffolds. 34 

 35 

Data statement: All supporting data and methods have been provided within the article or through a 36 

Supplementary Material file, which includes 14 supplementary figures and 4 supplementary tables. 37 

  38 
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Introduction 39 

Nature is a rich source of new compounds that fuel innovation in the pharmaceutical and agriculture sectors [1]. 40 

The remarkable diversity of natural products (NPs) results from a similarly diverse pool of biosynthetic enzymes 41 

[2]. These often are highly selective and efficient, carrying out demanding reactions in aqueous media, and 42 

therefore are interesting starting points for the development of industrially-relevant biocatalysts [2]. Faster and 43 

more accessible DNA sequencing technologies have enabled, in the past decade, a large number of genomics 44 

and metagenomics projects focused on the microbial world [3]. The resulting sequence data holds immense 45 

opportunities for the discovery of new microbial enzymes and their associated NPs [4]. 46 

Halogenation is a widely used and well-established reaction in synthetic and industrial chemistry [5], which 47 

can have significant consequences for the bioactivity, bioavailability and metabolic activity of a compound 48 

[5-7]. Halogenating biocatalysts are thus highly desirable for biotechnological purposes [6, 8]. The 49 

mechanistic aspects of biological halogenation can also inspire the development of organometallic catalysts 50 

[9]. Nature has evolved multiple strategies to incorporate halogen atoms into small molecules [6], as 51 

illustrated by the structural diversity of thousands of currently known halogenated NPs, which include drugs 52 

and agrochemicals [10, 11]. Until the early 1990’s, haloperoxidases were the only known halogenating 53 

enzymes. Research on the biosynthesis of halogenated metabolites eventually revealed a more diverse range 54 

of halogenases with different mechanisms. Currently, biological halogenation is known to proceed by 55 

distinct electrophilic, nucleophilic or radical mechanisms [6]. Electrophilic halogenation is characteristic of 56 

the flavin-dependent halogenases and the heme- and vanadium-dependent haloperoxidases, which catalyze 57 

the installation of C-I, C-Br or C-Cl bonds onto electron-rich substrates. Two families of nucleophilic 58 

halogenases are known, the halide methyltransferases and SAM halogenases. Both utilize S-59 

adenosylmethionine (SAM) as an electrophilic co-factor or as a co-substrate and halide anions as 60 

nucleophiles. Notably, these are the only halogenases capable of generating C-F bonds. Finally, radical 61 

halogenation has only been described for nonheme- iron/2-oxo-glutarate (2OG)-dependent enzymes. This 62 
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type of halogenation allows the selective insertion of a halogen into a non-activated, aliphatic C-H bond. A 63 

recent review by Agarwal et al (2017) thoroughly covers the topic of enzymatic halogenation. 64 

Cyanobacteria are a rich source of halogenases among bacteria, in particular for nonheme iron/2OG-dependent 65 

and flavin-dependent halogenases (Fig. 1). AmbO5 and WelO5 are cyanobacterial enzymes that belong to the 66 

nonheme iron/2OG-dependent halogenase family  [12-14]. AmbO5 is an aliphatic halogenase capable of site-67 

selectively modifying ambiguine, fischerindole and hapalindole alkaloids [12, 13]. The close homolog (79% 68 

sequence identity) WelO5 is capable of performing analogous halogenations in hapalindole-type alkaloids and 69 

it is involved in the biosynthesis of welwintindolinone [13, 15]. BarB1 and BarB2 are also nonheme iron/2OG-70 

dependent halogenases that catalyze trichlorination of a methyl group from a leucine substrate attached to the 71 

peptidyl carrier protein BarA in the biosynthesis of barbamide [16-18]. Other halogenases from this enzyme 72 

family include JamE, CurA, and HctB. JamE and CurA catalyse halogenations in intermediate steps of the 73 

biosynthesis of jamaicamide and curacin A, respectively [19, 20], while HctB is a fatty acid halogenase 74 

responsible for chlorination in  hectochlorin assembly [21]. ApdC and McnD are FAD-dependent halogenases 75 

responsible for the modification of cyanopeptolin-type peptides (also known as (3S)-amino-(6R)-hydroxy 76 

piperidone (Ahp)-cyclodepsipeptides). These enzymes halogenate, respectively, anabaenopeptilides in 77 

Anabaena and micropeptins in Microcystis strains [22-25]. AerJ is another example of a FAD-dependent 78 

halogenase, which acts during aeruginosin biosynthesis in Planktothrix and Microcystis strains [24]. 79 

Recent efforts to characterize the biosynthesis of structurally unusual cyanobacterial natural products have 80 

uncovered a distinct class of halogenating enzymes. Using a genome mining approach, Nakamura et al. (2012) 81 

discovered the cylindrocyclophane biosynthetic gene cluster (BGC) in the cyanobacterium Cylindrospermum 82 

licheniforme ATCC 29412 [26]. The natural paracyclophane natural products were found to be assembled from 83 

two chlorinated alkylresorcinol units [27]. The paracyclophane macrocycle is created by forming two C-C bonds 84 

using a Friedel–Crafts-like alkylation reaction catalyzed by the enzyme CylK [27] (Fig. 1). Therefore, although 85 

many cylindrocyclophanes are not halogenated, their biosynthesis involves a halogenated intermediate [26, 27], 86 

a process termed a cryptic halogenation [28]. Nakamura et al. (2017) showed that the CylC enzyme was 87 
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responsible for regio- and stereoselectively installing a chlorine atom onto the fatty acid-derived sp3 carbon 88 

center of a biosynthetic intermediate that is subsequently elaborated to the key alkylresorcinol monomer (Fig. 89 

1). To date, CylC is the only characterized dimetal-carboxylate halogenase (this classification is based on both 90 

biochemical evidence and similarity to other diiron-carboxylate proteins) [27]. Homologs of CylC have been 91 

found in the BGCs of the columbamides [29], bartolosides [30], microginin [27], 92 

puwainaphycins/minutissamides [31], and chlorosphaerolactylates [32], all of which produce halogenated 93 

metabolites. CylC-type enzymes bear low sequence homology to dimetal desaturases and N-oxygenases [27], 94 

functionalize C-H bonds in aliphatic moieties at either terminal or mid-chain positions, and are likely able to 95 

carry out gem-dichlorination (Kleigrewe 2015, Leão 2015). The reactivity displayed by CylC and its homologs 96 

is of interest for biocatalysis, in particular because this type of carbon center activation is often inaccessible to 97 

organic synthesis [15, 33]. An understanding of the molecular basis for the halogenation of different positions 98 

and for chain-length preference will also be of value for biocatalytic applications. Hence, accessing novel 99 

variants of CylC enzymes will facilitate the functional characterization of this class of halogenases, mechanistic 100 

studies, and biocatalyst development.  101 

Here, we provide an in-depth analysis of the diversity, distribution and context of CylC homologs in microbial 102 

genomes. Using both publicly available genomes and our in-house culture collection of cyanobacteria 103 

(LEGEcc), we report that CylC enzymes are common in cyanobacterial genomes, found in numbers comparable 104 

to those of flavin-dependent or nonheme iron/2OG-dependent halogenases. We additionally show that CylC 105 

homologs are distributed throughout the cyanobacterial phylogeny and are, to a great extent, part of cryptic 106 

BGCs with diverse architectures, underlining the potential for NP discovery associated with this new halogenase 107 

class. 108 
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  109 

Figure 1. Selected examples of halogenation reactions catalyzed by different classes of microbial enzymes, with 110 

a focus on cyanobacterial halogenases. An asterisk denotes that the enzyme has been biochemically 111 

characterized. ACP – acyl carrier protein.  112 
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Methods 113 

Sequence similarity networks and Genomic Neighborhood Diagrams 114 

Sequence similarity networks (SSNs) were generated using  the EFI-EST sever, following  a “Sequence BLAST” 115 

of CylC (AFV96137) as input [34], using negative log e-values of 2 and 40 for UniProt BLAST retrieval and 116 

SSN edge calculation, respectively. This SSN edge calculation cutoff was found to segregate the homologs into 117 

different SSN clusters, less stringent cutoff values resulted in a single SSN cluster. The 153 retrieved sequences 118 

and the query sequence were then used to generate the SSNs with an alignment score threshold of 42 and a 119 

minimum length of 90. The networks were visualized in Cytoscape (v3.80). The full SSN obtained in the 120 

previous step was used to generate Genomic Neighborhood Diagrams (GNDs) using the EFI-GNT tool [34]. A 121 

Neighborhood Size of 10 was used and the Lower Limit for Co-occurrence was 20%. The resulting GNDs were 122 

visualized in Cytoscape (Fig. 2).  123 

 124 

Cyanobacterial strains and growth conditions 125 

Freshwater and marine cyanobacteria strains from Blue Biotechnology and Ecotoxicology Culture Collection 126 

(LEGEcc) (CIIMAR, University of Porto) were grown in 50 mL Z8 medium [35] or 50 mL Z8 25‰ sea salts 127 

(Tropic Marine) with vitamin B12, with orbital shaking (~200 rpm) under a regimen of 16 h light (25 μmol 128 

photons m-2 s -1)/8 h dark at 25 °C. 129 

 130 

Genomic DNA extraction 131 

Fifty milliliters of each cyanobacterial strain were centrifuged at 7000 ×g for 10 min. The cell pellets were used 132 

for genomic DNA (gDNA) extraction using the PureLink ® Genomic DNA Mini Kit (Thermo Fisher 133 

Scientific®) or NZY Plant/Fungi gDNA Isolation kit (Nzytech), according to the manufacturer’s instructions. 134 

 135 

Primer design  136 

Basic local alignment search tool (BLAST) searches using CylC [Cylindrospermum licheniforme UTEX B 137 

2014] as query identified related genes (for tBLASTn: 31-93% amino acid identity). We discarded nucleotide 138 
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hits with a length <210 and e-values <1×10-10. The complete sequences (56 cylC homolog sequences, Table S1) 139 

were collected from NCBI and aligned using MUltiple Sequence Comparison by Log-Expectation (MUSCLE) 140 

[36]. Phylogenetic analysis of the hits was performed using FastTree GTR with a rate of 100. Streptomyces 141 

thioluteus aurF, encoding a distant dimetal-carboxylate protein  [27] was used as an outgroup 142 

(AJ575648.1:4858-5868). We divided the phylogeny of cylC homologs in five groups with moderate similarity 143 

(Fig. S1). The regions of higher similarity within each group were selected for degenerate primer design (Table 144 

1). 145 

 146 

Table 1. Degenerate primers 147 

Code Sequence Expected amplicon size (bp) Tm (ºC) 
AF CAAAAAATHGCDCTYAAYC 

788-986 55 
AR TGDAADCCTTCRTGTTC 
BF CACAAAAAHTWGCTCTYAAYC 

673-715 57 
BR GTKGTRTGGWARGATTCATC 
CF AATCAWCTTTAYTGGGTRGC 

506-509 55 
CR AARAARTGAAARCTYTCRTC 
DF AATCAAACYAGYGCWGC 

299 51 
DR GTRAAATAYTGACAAGC 
XF ATCWRGAAACCARTSAAGA 

449-591 51 
XR CATCAAAAACTTTYYGTARRC 

 148 

PCR conditions 149 

The PCR to detect cylC homologs were conducted in a final volume of 20 µL, containing 6.9 µL of ultrapure 150 

water, 4.0 µL of 5× GoTaq Buffer (Promega), 2.0 µL of MgCl2, 1.0 µL of dNTPs, 2.0 µL of reverse and 2.0 µL 151 

of forward primer (each at 10 µM), 0.1 µL of GoTaq and 2.0 µL of cyanobacterial gDNA. PCR thermocycling 152 

conditions were: denaturation for 5 min at 95 °C; 35 cycles with denaturation for 1 min at 95 °C, primer 153 

annealing for 30 s at different temperatures (55 ºC for group A; 57ºC for group B; 55 ºC for group C; 51 ºC for 154 

group D; 51 ºC for group X) and extension for 1 min at 72 °C; and final extension for 10 min at 72 °C.  155 

When not already available, the 16S rRNA gene for a tested strain was amplified by PCR, using standard primers 156 

for amplification (CYA106F 5’ CGG ACG GGT GAG TAA CGC GTG A 3’ and CYA785R 5’ GAC TAC 157 
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WGG GGT ATC TAA TCC 3’). The PCR reactions were conducted in a final volume of 20 µL, containing 6.9 158 

µL of ultrapure water, 4.0 µL of 5× GoTaq Buffer, 2.0 µL of MgCl2, 1.0 µL of dNTPs, 2.0 µL of primer reverse 159 

and 2.0 µL of primer forward (each one at 10 µM), 0.1 µL of GoTaq and 2.0 µL of cyanobacterial DNA. PCR 160 

thermocycling conditions were: denaturation for 5 min at 95 °C; 35 cycles with denaturation for 1 min at 95 °C, 161 

primer annealing for 30 s at 52 ºC and extension for 1 min at 72 °C; and final extension for 10 min at 72 °C.  162 

Amplicon sizes were confirmed after separation in a 1.0% agarose gel. 163 

 164 

Cloning and sequencing 165 

The cylC homolog and 16S rRNA gene sequences were obtained either directly from the NCBI or through 166 

sequencing. To obtain high quality sequences, the TOPO PCR cloning (Invitrogen) was used. The TOPO cloning 167 

reaction was conducted in a final volume of 3 µL, containing 1 µL of fresh PCR product, 1 µL of salt solution, 168 

0.5 µL of TOPO vector and 0.5 µL of water. The reaction was incubated for 20 min at room temperature. Three-169 

microliters of TOPO reaction were added into a tube containing chemically competent E. coli (Top10, Life 170 

Technologies) cells. After 30 min of incubation on ice, the cells were placed for 30 s at 42 ºC without shaking 171 

and were then immediately transferred to ice. 250 µL of room temperature SOC medium were added to the 172 

previous mixture and the tube was horizontally shaken at 37 ºC for 1 h (180rpm). 60 µL of the different cloning 173 

reactions were spread onto LB ampicillin/X-gal plates and incubated overnight at 37 ºC. 174 

Two or three positive colonies from each reaction were tested by colony-PCR. The PCR was conducted in a 175 

final volume of 20 µL, containing 10.9 µL of ultrapure water, 4.0 µL of 5x GoTaq Buffer, 2.0 µL of MgCl2, 1.0 176 

µL of dNTPs, 1.0 µL of reverse pUCR and 1.0 µL of forward pUCF primers (each at 20 µM), 0.1 µL of GoTaq 177 

and the target colony. PCR thermocycling conditions were: denaturation for 5 min at 95 °C; 35 cycles with 178 

denaturation for 1 min at 95 °C, primer annealing for 30 s at 50 ºC and extension for 1 min at 72 °C; and final 179 

extension for 10 min at 72 °C. Amplicon sizes were confirmed after separation in an 1.0 % agarose gel. Selected 180 

colonies were incubated overnight at 37 ºC (180 rpm), in 5 mL of LB supplemented with 100 µg mL-1 ampicillin. 181 

The plasmids containing the amplified PCR products were extracted (NZYMiniprep kits) and Sanger sequenced 182 

using pUC primers. 183 
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 184 

Cyanobacteria genome sequencing 185 

Many of the LEGEcc strains are non-axenic, and so before extraction of gDNA for genome sequencing, an 186 

evaluation of the amount of heterotrophic contaminant bacteria in cyanobacterial cultures was performed by 187 

plating onto Z8 or Z8 with added 2.5% sea salts (Tropic Marine) and vitamin B12 (10 µg/L) agar medium 188 

(depending the original environment) supplemented with casamino acids (0.02% wt/vol) and glucose (0.2% 189 

wt/vol) [37]. The plates were incubated for 2-4 days at 25 ºC in the dark and examined for bacterial growth. 190 

Those cultures with minimal contamination were used for DNA extraction for genome sequencing. The selection 191 

of DNA extraction methodology used was based on morphological features of each strain. Total genomic DNA 192 

was isolated from a fresh or frozen pellet of 50 mL culture using a CTAB-chloroform/isoamyl alcohol-based 193 

protocol [38] or using the commercial PureLink Genomic DNA Mini Kit (Thermo Fisher Scientific®) or the 194 

NZY Plant/Fungi gDNA Isolation kit (NZYTech). The latter included a homogenization step (grinding cells 195 

using a mortar and pestle with liquid nitrogen) before extraction using the standard kit protocol. The quality of 196 

the gDNA was evaluated in a DS-11 FX Spectrophotometer (DeNovix) and 1 % agarose gel electrophoresis, 197 

before genome sequencing, which was performed elsewhere (Era7, Spain and MicrobesNG, UK) using 2 × 250 198 

bp paired-end libraries and the Illumina platform (except for Synechocystis sp. LEGE 06099, whose genome 199 

was sequenced using the Ion Torrent PGM platform). A standard pipeline including the identification of the 200 

closest reference genomes for reading mapping using Kraken 2 [39] and BWA-MEM to check the quality of the 201 

reads [40] was carried out,  while de novo assembly was performed using SPAdes [41]. The genomic data 202 

obtained for each strain was treated as a metagenome. The contigs obtained as previously mentioned were 203 

analyzed using the binning tool MaxBin 2.0 [42] and checked manually in order to obtain only cyanobacterial 204 

contigs. The draft genomes were annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) 205 

[43] and submitted to GenBank under the BioProject number SUB8150995. In the case of Hyella patelloides 206 

LEGE 07179 and Sphaerospermopsis sp. LEGE 00249 the assemblies had been previously deposited in NCBI 207 

under the BioSample numbers SAMEA4964519 and SAMN15758549, respectively.   208 

 209 
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Genomic context of CylC homologs 210 

BLASTp searches using CylC [Cylindrospermum licheniforme UTEX B 2014] as query identified related CylC 211 

homologs within the publicly available cyanobacterial genomes and in the genomes of LEGEcc strains. We 212 

annotated the genomic context for each CylC homolog using antiSMASH v5.0 [44] and manual annotation 213 

through BLASTp of selected proteins. Some BGCs were not identified by antiSMASH and were manually 214 

annotated using BLASTp searches.  215 

 216 

Phylogenetic analysis 217 

Nucleotide sequences of cylC homologs obtained from the NCBI and from genome sequencing in this study, 218 

were aligned using MUSCLE from within the Geneious R11.0 software package (Biomatters). The nucleotide 219 

sequence of the distantly-related dimetal-carboxylate protein AurF [27] from Streptomyces thioluteus 220 

(AJ575648.1:4858-5868) was used as an outgroup. The alignments, trimmed to their core 788, 673, 506, 299 221 

and 499 positions (for group A, B, C, D and X, respectively), were used for phylogenetic analysis, which was 222 

performed using FastTree 2 (from within Geneious), using a GTR substitution model (from jmodeltest, [45]) 223 

with a rate of 100 (Fig. S2).  224 

For the phylogenetic analysis based on the 16S rRNA gene (Fig. 3, Fig. S3), the corresponding nucleotide 225 

sequences were retrieved from the NCBI (from public available genomes until March 16, 2020) or from 226 

sequence data (amplicon or genome) obtained in this study. The sequences were aligned as detailed for cylC 227 

homologs and trimmed to the core shared positions (663). A RAxML-HPC2 phylogenetic tree inference using 228 

maximum likelihood/rapid bootstrapping run on XSEDE (8.2.12) with 1000 bootstrap iterations in the Cipres 229 

platform [46] was performed. 230 

The amino acid sequences of CylC homologs were aligned using MUSCLE from within the Geneious software 231 

package (Biomatters). The alignments were trimmed to their core 333 residues and used for phylogenetic 232 

analysis, which was performed using RAxML-HPC2 phylogenetic tree inference using maximum 233 
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likelihood/rapid bootstrapping run on XSEDE (8.2.12) with 1000 bootstrap iterations in the Cipres platform [46] 234 

(Fig. 4c). 235 

 236 

CORASON analysis 237 

CORASON, a bioinformatic tool that computes multi-locus phylogenies of BGCs within and across gene cluster 238 

families [47], was used to analyze cyanobacterial genomes collected from the NCBI and the LEGEcc genomes 239 

(Table S2). In total 2059 cyanobacterial genomes recovered from NCBI and 56 additional LEGE genomes were 240 

used in the analysis. The amino acid sequences of CurA (AAT70096.1), WelO5 (AHI58816.1), McnD 241 

(CCI20780.1), Bmp5 (WP_008184789.1), PrnA (WP_044451271.1) and CylC (ARU81117.1) were used as 242 

query and, for each enzyme, a reference genome was selected (Table S2). To increase the phylogenetic 243 

resolution, selected genomes were removed from the analysis of enzymes CylC, PrnA, CurA, McnD and Bmp5 244 

(Table S2). Additionally, for the CylC analysis, a few BGCs were manually extracted and included in the 245 

analysis (Table S2) since they were not detected by CORASON. 246 

 247 

Prevalence of halogenases in cyanobacterial genomes 248 

Representative proteins of each class were used as query in each search: CylC (ARU81117.1), BrtJ 249 

(AKV71855.1), “Mic” (WP_002752271.1) - the halogenase in the putative microginin gene cluster – ColD 250 

(AKQ09581.1), ColE (AKQ09582.1), NocO (AKL71648.1), NocN (AKL71647.1) for dimetal-carboxylate 251 

halogenases; PrnA (WP_044451271.1), Bmp5 (WP_008184789.1), and McnD (CCI20780.1) for flavin-252 

dependent halogenases; the halogenase domains from CurA (AAT70096.1), and the halogenases Barb1 253 

(AAN32975.1), HctB (AAY42394.1), WelO5 (AHI58816.1) and AmbO5 (AKP23998.1) for nonheme iron-254 

dependent halogenases). Non-redundant sequences obtained for these searches using a 1×10-20 e-value cutoff, 255 

which represents a percentage identity between the query and target protein superior to 30%, were considered 256 

to share the same function as the query. 257 

  258 
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Results and Discussion 259 

CylC-like halogenases are mostly found in cyanobacteria 260 

To investigate the distribution of CylC homologs encoded in microbial genomes, we first searched the reference 261 

protein (RefSeq) or non-redundant protein sequences (nr) databases (NCBI) for homologs of CylC or BrtJ, using 262 

the Basic Local Alignment Search Tool, BLASTp (min 25% identity, 9.9×10-20 E-value and 50% coverage). A 263 

total of 128 and 246 homologous unique protein sequences were retrieved using the RefSeq or nr databases, 264 

respectively; in both cases, sequences were primarily from cyanobacteria (96 and 88%, respectively) (Fig. 2a). 265 

We then used the Enzyme Similarity Tool of the Enzyme Function Initiative (EFI-EST) [34] to evaluate the 266 

sequence landscape of dimetal-carboxylate halogenases. Using CylC as query, we obtained a SSN (sequence 267 

similarity network) composed of 154 sequences retrieved from the UniProt database [48] (Fig. 2b). The SSN 268 

featured two major clusters, one containing homologs from diverse cyanobacterial genera, the other composed 269 

of homologs from several cyanobacteria, with a few from proteobacteria (mostly deltaproteobacteria) and two 270 

from the cyanobacteria sister-phylum Melainabacteria. A third SSN cluster was composed only by the 271 

previously reported BrtJ enzymes and, finally, a homolog from the cyanobacterial genus Hormoscilla remained 272 

unclustered. We were unable to recover any SSN that included clusters containing other characterized enzyme 273 

functions, which attests to the uniqueness of the dimetal-carboxylate halogenases in the current protein-sequence 274 

landscape. 275 
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 276 

Figure 2. Abundance of CylC homologs in bacteria. a) BLASTp using CylC (GenBank accession no: 277 

ARU81117) as query against different databases, shows that these dimetal-carboxylate enzymes are found 278 

almost exclusively in cyanobacteria. b) Sequence Similarity Network (SSN) of CylC depicting the similarity-279 

based clustering of UniProt-derived protein sequences with homology (BLAST e-value cutoff 1×10-2, edge e-280 

value cutoff 1×10-40) to CylC (GenBank accession no: ARU81117). In each node, the bacterial genus for the 281 

corresponding UniProt entry is shown (NA –  not attributed). 282 

 283 

 284 

 285 
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CylC homologs are widely distributed throughout the phylum Cyanobacteria 286 

With the intent of accessing a wide diversity of CylC homolog sequences, we decided to use a degenerate-primer 287 

PCR strategy to discover additional homologs in cyanobacteria from the LEGEcc culture collection [49], 288 

because the phylum Cyanobacteria is diverse and still underrepresented in terms of genome data [50-55]. The 289 

LEGEcc culture collection maintains cultures isolated from diverse freshwater and marine environments, mostly 290 

in Portugal, and, for example, contains all known bartoloside-producing strains [30]. Primers were designed 291 

based on 54 nucleotide sequences retrieved from the NCBI that were selected to represent the phylogenetic 292 

diversity of CylC homologs (Fig. S1). Due to the lack of highly conserved nucleotide sequences among all 293 

homologs considered, we divided the nucleotide alignment into five groups and designed a degenerate primer 294 

pair for each. Upon screening 326 strains from LEGEcc using the five primer pairs, we retrieved 89 sequences 295 

encoding CylC homologs, confirmed through cloning and Sanger sequencing of the obtained amplicons. We 296 

were unable to directly analyze the diversity of the entire set of LEGEcc-derived cylC amplicons due to low 297 

overlap between sequences obtained with different primers. As such, we performed a phylogenetic analysis of 298 

the diversity retrieved with each primer pair (Fig. S2), by aligning the PCR-derived sequences with a set of 299 

diverse cylC genes retrieved from the NCBI. For some strains, our PCR screen retrieved more than one homolog 300 

using different primer pairs (e.g. Nostoc sp. LEGE 12451 or Planktothrix mougeotii LEGE 07231). In general, 301 

and for each primer pair, the PCR screen retrieved mostly sequences that were closely related and associated to 302 

one or two phylogenetic clades. This can likely be explained by the geographical bias that might exist in the 303 

LEGEcc culture collection [49] and/or with primer design and PCR efficiency issues, which might have favored 304 

certain phylogenetic clades.  305 

To access full-length sequences of the CylC homologs identified among LEGEcc strains, as well as their 306 

genomic context, we undertook a genome-sequencing effort informed by our PCR screen. We selected 21 strains 307 

for genome sequencing, which represents the diversity of CylC homologs observed in the different PCR 308 

screening groups. The resulting genome data was used to generate a local BLAST database and the homologs 309 
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were located within the genomes. In some cases, additional homologs that were not detected in the PCR screen 310 

were identified. Overall, 33 full-length genes encoding CylC homologs were retrieved from LEGEcc strains. 311 

To explore the phylogenetic distribution of CylC homologs encoded in publicly available reference genomes 312 

and the herein sequenced LEGEcc genomes, we aligned the 16S rRNA genes from 648 strains with RefSeq 313 

genomes and the LEGEcc strains that were screened by PCR in this study. Using this dataset, we performed a 314 

phylogenetic analysis which indicated that CylC homologs are broadly distributed through five Cyanobacterial 315 

orders: Nostocales, Oscillatoriales, Chroococcales, Synechococcales and Pleurocapsales (Fig. 3, Fig. S3). It is 316 

noteworthy that the cyanobacterial orders for which we did not find CylC homologs (Chroococcidiopsidales, 317 

Spirulinales, Gloeomargaritales and Gloeobacterales) are poorly represented in our dataset (Fig. 3, Fig. S3). 318 

However, our previous BLASTp search against the nr database did retrieve two close homologs in two 319 

Chroococcidiopsidales strains (genera Aliterella and Chroococcidiopsis) and a more distant homolog in a 320 

Gloeobacter strain (Gloeobacterales) (Table S3). Given the wide but punctuated presence of CylC homologs 321 

among the cyanobacterial diversity considered in this study, it is unclear how much of the current CylC homolog 322 

distribution reflects vertical inheritance or horizontal gene transfer events. 323 
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 324 

Figure 3. RAxML cladogram of the 16S rRNA gene of LEGEcc strains (grey squares) and from cyanobacterial 325 

strains with NCBI-deposited reference genomes, screened in this study. Taxonomy is presented at the order level 326 

(colored rectangles). Strains whose genomes encode CylC homologs are denoted by black squares. Green 327 

squares indicate that at least one homolog was detected by PCR-screening and verified by retrieving the 328 

sequence of the corresponding amplicon by cloning followed by Sanger sequencing. Gloeobacter violaceus PCC 329 

7421 served as an outgroup. A version of this cladogram including the bootstrap values for 1000 replications is 330 

provided as Supplementary Material. 331 

 332 

Diversity of BGCs encoding CylC homologs 333 

To characterize the biosynthetic diversity of BGCs encoding CylC homologs, which were found in 78 334 

cyanobacterial genomes (21 from LEGEcc and 57 from RefSeq) from different orders, we first submitted these 335 
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genome sequences for antiSMASH [44] analysis. 55 CylC-encoding BGCs were detected, which were classified 336 

as resorcinol, NRPS, PKS, or hybrid NRPS-PKS. Given the number of CylC homolog-encoding genes detected 337 

in these genomes (105), we considered that several BGCs might have not been identified with antiSMASH. 338 

Therefore, we performed manual annotation of the genomic contexts of the CylC homologs and were able to 339 

identify 20 additional BGCs. Upon analysis of the entire set of CylC-encoding BGCs, we classified the BGCs 340 

in seven major categories, based on their overall architecture, which we designated as follows (listed in 341 

decreasing abundance): Rieske-containing (n = 36), type I PKS 342 

(chlorosphaerolactylate/columbamide/microginin/puwainaphycin-like, n = 29), type III PKS (n = 13), 343 

dialkylresorcinol (n = 8), PriA-containing (n = 5), nitronate monooxygenase-containing (n = 3) and cytochrome 344 

P450/sulfotransferase-containing (n = 1) (Fig. 4a, Figs. S4-S10). Three BGCs were excluded from our 345 

classification since they were only partially sequenced (Fig. S11). Examples of each of the cluster architectures 346 

are presented in Fig. 4a and schematic representations of each of the 98 classified BGCs are presented in 347 

Supplementary Figures S4-S10. It should be stressed that within several of these seven major categories, there 348 

is still considerable BGC architecture diversity, notably within the dialkylresorcinol, type I and type III PKS 349 

BGCs. Rieske-containing BGCs are not associated with any known NP and encode between two and four 350 

proteins with Rieske domains. Most contain a sterol desaturase family protein, feature a single CylC homolog 351 

and are chiefly found among Nostocales and Oscillatoriales (Fig. S4). PriA-containing BGCs encode, apart from 352 

the Primosomal protein N' (PriA), a set of additional diguanylate cyclase/phosphodiesterase, aromatic ring-353 

hydroxylating dioxygenase subunit alpha and a ferritin-like protein and were only detected in Synechocystis spp. 354 

(Fig. S5). These are similar to the Rieske-containing BGCs; however, in strains harboring PriA-containing 355 

BGCs, the additional functionalities that are found in the Rieske-containing BGCs can be found dispersed 356 

throughout the genome (Table S4). In our dataset, a single sulfotransferase/P450 containing BGC was detected 357 

in Stanieria sp. and was unrelated to the above-mentioned architectures (Fig. S6). Type I PKS BGCs encode 358 

clusters similar to those of the chlorosphaerolactylates, columbamides, microginins and puwainaphycins and 359 

typically feature a fatty acyl-AMP ligase (FAAL) and an acyl carrier protein upstream of one or two CylC 360 

homologs and a type I PKS downstream of the CylC homolog(s). These were found in Nostocales and 361 
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Oscillatoriales strains (Fig. S7). Taken together with the known NP structures associated with these BGCs [29, 362 

56, 57], we can expect that the encoded metabolites feature halogenated fatty acids in terminal or mid-chain 363 

positions. BGCs of the dialkylresorcinol type, which contain DarA and DarB homologs (Bode 2013, Leão 2015), 364 

including several bartoloside-like clusters (found only in LEGEcc strains), were detected in Nostocales, 365 

Pleurocapsales and Chroococcales (Fig. S8). Type III PKS BGCs encoding CylC homologs, which include a 366 

variety of cyclophane BGCs, were detected in the Nostocales, Oscillatoriales and Pleurocapsales (Fig. S9). 367 

Finally, nitronate monooxygenase-containing BGCs, which are not associated with any known NP, were only 368 

found in Nostocales strains from the LEGEcc and featured also genes encoding PKSI, ferredoxin, ACP or 369 

glycosyl transferase (Fig. S10).  370 

A less BGC-centric perspective of the genomic context of CylC homologs could be obtained through the 371 

Genome Neighborhood Tool of the EFI (EFI-GNT, [58]). Using the previously generated SSN as input, we 372 

analyzed the resulting Genomic Neighborhood Diagrams (Fig. 4b), which indicated that the three SSN clusters 373 

had entirely different genomic contexts (herein defined as 10 upstream and 10 downstream genes from the cylC 374 

homolog). The SSN cluster that encompasses CylC and its closest homologs indicates that these enzymes 375 

associate most often with PP-binding (ACP/PCPs) and AMP-binding (such as FAALs) proteins. Regarding the 376 

SSN cluster that includes both cyanobacterial and non-cyanobacterial CylC homologs, their genomic contexts 377 

most prominently feature Rieske/[2Fe-2S] cluster proteins as well as fatty acid hydroxylase family enzymes. 378 

The cyanobacterial homologs are exclusively encoded in the Rieske and PriA-containing BGCs. Homologs from 379 

this particular SSN cluster may not require a phosphopantetheine tethered substratei+ as no substrate activation 380 

or carrier proteins/domains were found in their genomic neighborhoods, or may act on central fatty acid 381 

metabolism intermediates. The BrtJ SSN cluster, composed only of the two reported BrtJ enzymes, shows 382 

entirely different surrounding genes, obviously corresponding to the brt genes. Also noteworthy is the 383 

considerable number of proteins with unknown function found in the vicinity of dimetal-carboxylate 384 

halogenases, suggesting that uncharted biochemistry is associated with these enzymes. 385 
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Since SSN analysis generated only three clusters of CylC homologs, we next investigated the genetic relatedness 386 

among these enzymes and how it correlates to BGC architecture. We performed a phylogenetic analysis of the 387 

CylC homologs from the 98 classified and 3 unclassified BGCs (Fig. 4c). Our analysis indicated that PriA-388 

containing and Rieske-containing BGCs formed a well-supported clade. Its sister clade contained homologs 389 

from the remaining BGCs. Within this larger clade, homologs associated with the type I PKS, dialkylresorcinol 390 

or type III PKS BGCs were found to be polyphyletic. In some cases, the same BGC contained distantly related 391 

CylC homologs (e.g. Hyella patelloides LEGE 07179, Anabaena cylindrica PCC 7122) (Figure 4c). This 392 

analysis also revealed that several strains (Fig. 5c) encode two or three phylogenetically distant CylC homologs 393 

in different BGCs. Overall, our data shows that CylC homologs have evolved to interact with different partner 394 

enzymes to generate chemical diversity, but that their phylogeny is, in some cases, not entirely consistent with 395 

BGC architecture. These observations suggest that functionally convergent associations between CylC 396 

homologs and other proteins have emerged multiple times during evolution. Examples include the CylC/CylK 397 

and BrtJ/BrtB associations, which use cryptic halogenation to achieve C-C and C-O bond formation, respectively 398 

[27, 59]. However, the role of the CylC homolog-mediated halogenation of fatty acyl moieties observed for 399 

other cyanobacterial metabolites is not currently understood. Interestingly, while a number of CylC homologs, 400 

including those that are part of characterized BGCs, likely act on ACP-tethered fatty acyl substrates [27, 59], 401 

those from the PriA- Rieske- and cytochrome P450/sulfotransferase categories do not have a neighboring carrier 402 

protein and therefore might not require a tethered substrate. This would be an important property for a CylC-403 

like biocatalyst [15]. 404 

 405 

 406 
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 407 

Figure 4. Diversity and genomic context of CylC-like enzymes BGCs. a) Examples of the different BGCs 408 

architectures found among the clusters encoding CylC homologs. b) Genome Neighborhood Diagram (GND) 409 

depicting the Pfam domains associated with each cluster from the initial SSN of CylC homologs. The size of 410 

each node is proportional to the prevalence of the Pfam domain within the genomic context of the CylC 411 
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homologs from each SSN cluster. c) RAxML cladogram (1000 replicates, shown are bootstrap values > 70%) 412 

of CylC homologs. The different colors represent a categorization based on common genes found within the 413 

associated biosynthetic gene clusters (see legend). Circles of the same color depict CylC homologs encoded by 414 

the same BGC. AurF (Streptomyces thioluteus HKI-22) was used as an outgroup. 415 

 416 

CylC enzymes and other cyanobacterial halogenases 417 

We sought to understand how CylC-type halogenases compare to other halogenating enzyme classes found in 418 

cyanobacteria in terms of prevalence and association with BGCs. To this end, we carried out a CORASON [47] 419 

analysis of publicly available cyanobacterial genomes (including non-reference genomes) and the herein 420 

acquired genome data from LEGEcc strains (a total of 2,115 cyanobacterial genomes). We used different 421 

cyanobacterial halogenases as input, namely CylC, McnD, PrnA, Bmp5, the 2OG-Fe(II) oxygenase domains 422 

from CurA and BarB1. CORASON attempts to retrieve genome context by exploring gene cluster diversity 423 

linked to enzyme phylogenies [47]. The CORASON analysis retrieved 117 (5.6%) dimetal-carboxylate 424 

halogenases, 61 (2.9%) nonheme iron-dependent halogenases and 226 (10.7%) flavin dependent halogenases 425 

from the cyanobacterial genomes (Fig. 5a). Using the protein homologs detected in BGCs by CORASON, a 426 

sequence alignment was performed for dimetal-carboxylate, nonheme iron/2OG-dependent and flavin-427 

dependent halogenases. For nonheme iron/2OG-dependent halogenases, we excised the halogenase domain from 428 

multi-domain enzyme sequences. After removing repeated sequences and trimming the alignments to their core 429 

shared positions, maximum-likelihood phylogenetic trees were constructed for each halogenase class and BGCs 430 

were annotated manually (Figs. S12-S14). Flavin-dependent halogenases were commonly associated with 431 

cyanopeptolin, 2,4-dibromophenol and pyrrolnitrin BGCs and with orphan BGCs of distinct architectures (Fig. 432 

S12). Regarding nonheme iron/2OG-dependent halogenases, we identified barbamide, curacin, hectochlorin and 433 

terpene/indole [60] BGCs and several distinct orphan BGCs (Fig. S13). For dimetal-carboxylate halogenases, 434 

columbamide, microginin, chlorosphaerolactylate, bartoloside and cyclophane BGCs were identified (Fig. S14). 435 

However, while some of the CylC homolog-encoding orphan BGCs previously identified by antiSMASH and 436 
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manual searches were detected by CORASON, the Rieske- and the PriA-containing BGCs were not. Hence, 437 

several CylC homologs were not accounted for in this analysis. For the same reasons, the other two halogenase 438 

types could also be missing some of its members in the CORASON-derived datasets. To circumvent this 439 

limitation and obtain a more comprehensive picture of the abundance of the three types of halogenase in 440 

cyanobacterial genomes, we used BLASTp searches against available cyanobacterial genomes in the NCBI 441 

database (including non-reference genomes). Several representatives of each halogenase class were used as 442 

query in each search (CylC, BrtJ, “Mic” – the halogenase in the putative microginin gene cluster – ColD, ColE, 443 

NocO and NocN for dimetal-carboxylate halogenases; PrnA, Bmp5 and McnD for flavin dependent halogenases; 444 

the halogenase domain from CurA and the halogenases BarB1, HctB, WelO5 and AmbO5 for nonheme iron-445 

dependent halogenases). Non-redundant sequences obtained for these searches using a 1×10-20 e-value cutoff 446 

(corresponding to >30% sequence identity) were considered to share the same function as the query. It is worth 447 

mentioning that, for nonheme iron/2OG-dependent enzymes, a single amino acid difference can convert 448 

hydroxylation activity into halogenation [61], so it is possible that – at least for this class – the sequence space 449 

considered does not correspond exclusively to halogenation activity. Dimetal-carboxylate and flavin-dependent 450 

halogenase homologs were found to be the most abundant in cyanobacteria, each with roughly 0.2 homologs per 451 

genome, while nonheme iron/2OG-dependent halogenase homologs are less common (~0.05 per genome) (Fig. 452 

5b). Overall, our analyses indicate that homologs of each of the three halogenase classes are associated with a 453 

large number of orphan BGCs and represent opportunities for NP discovery. Particularly noteworthy, CylC-like 454 

enzymes are clearly a major group of halogenases in cyanobacteria, despite having been the latest to be 455 

discovered [27]. 456 

 457 
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 458 

Figure 5. Prevalence of cyanobacterial halogenases. Frequency of halogenases in Cyanobacteria from 459 

CORASON analysis (A) and NCBI BLASTp analysis (B). (A) Dimetal-carboxylate halogenases: CylC - NCBI 460 

reference genomes, n = 2054 and LEGEcc genomes, n = 41 CylC-containing BGCs and 56 genomes; Flavin-461 

dependent halogenases: PrnA - NCBI reference genomes, n = 2051 and LEGEcc genomes, n = 56 genomes; 462 

Bmp5- NCBI reference genomes, n = 2050 and LEGEcc genomes, n = 56 genomes; McnD: NCBI reference 463 

genomes, n = 2052 and LEGEcc genomes, n = 54 genomes); Nonheme iron/2OG-dependent halogenases: 464 

halogenase domain from CurA - NCBI reference genomes, n = 2052 and LEGEcc genomes, n = 56 genomes. 465 

(B) Average of the total number of homologs per dimetal-carboxylate halogenases (CylC, BrtJ, “Mic”, ColD, 466 

ColE, NocO, NocN), flavin-dependent halogenases (Tryptophan 7-halogenase PrnA, Bmp5 and McnD) and 467 
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nonheme iron/2OG-dependent halogenases (Barb1, HctB, WelO5, AmbO5 and the halogenase domain from 468 

CurA).  469 

 470 

Conclusion 471 

The discovery of a new biosynthetic enzyme class brings with it tremendous possibilities for biochemistry and 472 

catalysis research, both fundamental and applied. Their functional characterization can also be used as a handle 473 

to identify and deorphanize BGCs that encode their homologs. CylC typifies an unprecedented halogenase class, 474 

which is almost exclusively found in cyanobacteria. By searching CylC homologs in both public databases and 475 

our in-house culture collection, we report here more than 100 new cyanobacterial CylC homologs. We found 476 

that dimetal-carboxylate halogenases are widely distributed throughout the phylum. The genomic 477 

neighborhoods of these halogenases are diverse and we identify a number of different BGC architectures 478 

associated with either one or two CylC homologs that can serve as starting points for the discovery of new NP 479 

scaffolds. In addition, the herein reported diversity and biosynthetic contexts of these enzymes will serve as a 480 

roadmap to further explore their biocatalysis-relevant activities. Finally, bartoloside-like BGCs and a CylC-481 

associated BGC architecture (nitronate monooxygenase-containing) were found only in the LEGEcc, reinforcing 482 

the importance of geographically focused strain isolation and maintenance efforts for the Cyanobacteria phylum. 483 

  484 
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