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A dynamic travel-time prediction model was developed for the South Jer-
sey (southern New Jersey) motorist real-time information system. During
development and evaluation of the model, the integration of traffic flow
theory, measurement and application of collected data, and traffic simu-
lation were considered. Reliable prediction results can be generated with
limited historical real-time traffic data. In the study, acoustic sensors were
installed at potential congested places to monitor traffic congestion. A
developed simulation model was calibrated with the data collected from
the sensors, and this was applied to emulate traffic operations and evalu-
ate the proposed prediction model under time-varying traffic conditions.
With emulated real-time information (travel times) generated by the sim-
ulation model, an algorithm based on Kalman filtering was developed and
applied to forecast travel times for specific origin–destination pairs over
different periods. Prediction accuracy was evaluated by the simulation
model. Results show that the developed travel-time predictive model
demonstrates satisfactory performance.

The impact of traffic congestion, continuously one of the major prob-
lems in various transportation systems, may be alleviated by provid-
ing timely and accurate traffic information to motorists. Motorists thus
could avoid congested routes by using alternative routes or changing
departure times. Advanced travel information systems (ATISs) have
been deployed for this purpose in many places in the United States.
This study, sponsored by New Jersey Department of Transportation
(DOT), developed a dynamic travel-time prediction system for a
potential traveler information system in southern New Jersey.

The Walt Whitman and Ben Franklin Bridges connect Camden
County in the southern region of New Jersey to the city of Philadel-
phia, Pennsylvania. Traffic originating in South Jersey mainly uses
NJ-55, NJ-42, Interstate 76, and Interstate 676. Congestion points
scattered over the roadways and at toll plazas during different periods
increase travel-time variations for road users.

From historic observation, it is known that the toll plazas on both
bridges were congested before introduction of the E-Z Pass system.
In addition, northbound NJ-42 to the Walt Whitman Bridge and the
point at which NJ-42 intersects with southbound NJ-168 are con-
gested during the morning peak period. Traffic conditions will worsen
over time because of the growing population. Other congestion points
in the morning peak of the study site are mainly caused by traffic merg-
ing from Interstate 295 and NJ-55 to NJ-42 before entering the Ben
Franklin Bridge.

An effective and real-time traffic advisory system that can ad-
vise motorists to use less-congested routes is desirable. For example,
motorists can be advised to take less-congested bridges to Philadel-
phia. If the total travel time through the Ben Franklin Bridge to
Philadelphia exceeds a certain threshold, use of the Walt Whitman
Bridge is cost-effective for time. Variable message signs could direct
traffic with the message Delay at Ben Franklin Bridge or Use Walt
Whitman Bridge. Predicted travel-time information could be trans-
mitted to drivers who have telecommunications equipment (e.g.,
aviation system, cell phone, beepers) to help in their route-choice
decision.

The focus for this study is development of a dynamic model to
predict path travel times for the South Jersey real-time motorist
information system.

LITERATURE REVIEW

An intelligent transportation system (ITS) combines electronic,
computer, and communication technologies with applications of
transportation theory and can collect, restore, process, and transmit
traffic information for transportation-management use. ATISs, a
core component of ITSs, rely on modern technology (e.g., wireless
communication) to predict and disseminate reliable information
for motorists. Most traffic-management systems rely on historic and
real-time traffic data to determine appropriate traffic-control and
diversion plans. The performance of these systems, however, may be
constrained because of weak predictive capabilities. The most use-
ful information for route choices is accurate predicted travel times
and delay information. Motorists, in the absence of predicted infor-
mation, implicitly project travel times on the basis of their experience.
Therefore, short-term predictions of what traffic conditions are likely
to be in a few minutes (e.g., 5 min into the future) are needed for both
traffic-management and traveler information systems. In-vehicle
route guidance systems are significantly popular in advanced trans-
portation management and information systems (ATMISs). With
recent advances in communication and information technology, real-
time traffic routing has emerged as a promising approach for ATMIS.
As soon as traffic conditions change, a more reliable routing plan can
be generated with consideration of predicted traffic information
rather than current conditions alone.

Travel-time estimation and prediction have received much atten-
tion. In previous studies, probe vehicles (1) and geographic informa-
tion system (GIS) technology (2) were applied to estimate travel time.
Some prediction models were developed by using historic traffic data
(3), while others relied on real-time traffic information (4). Develop-
ment of electronic and communication technologies can improve the
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capacity of traffic surveillance systems and the accuracy of prediction
methods. The fundamental input of predictive models is real-time and
historic information, for which emphasis was placed on the relation-
ship between travel time and flow or occupancy (5). However, the
restrictions of those models remain. For example, the fitted traffic dis-
tribution should be appropriately defined corresponding to different
ratios of variance to mean to make the predicted results consistent
with real-world conditions (6).

A sound travel-time predictive model can accurately forecast free-
way travel time in real time. Many previous studies focused on pre-
dicting travel times, which can be broadly categorized into the time
series models (7 ), the nonparametric regression method (8), and arti-
ficial neural networks (ANN) (9). In those models, the flow pattern
was formulated mathematically. However, the choices of probabilis-
tic distribution and time structure of the flow pattern contribute the
prediction errors. Thus, the ratio of variance to mean of the observed
flow is an effective indicator for selecting the probabilistic distribu-
tion of the traffic flow (6 ). To develop a dynamic prediction model
that can perform well under different traffic conditions, a method for
distinguishing between recurrent congestion and nonrecurring con-
gestion was developed (10), and it can be applied to identify current
traffic conditions and then perform appropriate prediction models.

These models, mostly autoregressive integrated moving average
model (ARIMA) type Box–Jenkins time series models (11), assume
that travel-time prediction is a point process, and they use purely sta-
tistical techniques to identify the stochastic nature in the observed data.
Available statistic models, such as ARIMA and regression models,
cannot capture the dynamics of traffic conditions and employ historic
traffic patterns to predict current-day trends. Therefore, the accuracy
of these algorithms depends on the similarity between the trend of the
historic data used for the determination of the parameters and the actual
measurements. Applications of fuzzy logic and neural networks were
applied to incorporate flexible reasoning and capture nonlinear rela-
tionships between link-specific detector data and travel times (12).
Although the algorithms that use only current-day measurements are
more responsive to current traffic variations, inherent time lags char-
acterize prediction with those algorithms. The Kalman filtering algo-
rithm was first applied to predict 15-min volume in urban networks
(13). Unlike off-line algorithms that use only historic data for pre-
diction, the Kalman filtering uses adaptive parameters responsive to
dynamic conditions. The advantage of this method is that it can up-
date the adaptive parameter to make the predictor reflect the traffic
fluctuation quickly.

ANNs can be applied for prediction when the functional form that
relates traffic measurements to predicted value is not available (9).
The performance of the predictive ANNs substantially depends on
the network structure, including the input–output specifications and the
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training samples. Although the selection of input and output values for
a given network may be less difficult than the determination of an
appropriate functional form, no robust theory is available that can
determine the best training procedure for a given problem. Compared
with the Kalman filtering algorithm, prediction of travel time with
ANNs may be less accurate if the future traffic patterns are not in
the training samples. A study found two disadvantages in the use
of ANNs: the length of time needed to learn the training data, and the
trial-and-error procedure used to find the optimum architecture (14).

A new approach for prediction of travel time along a corridor that
considers both real-time data and historic data is proposed. The time-
varying data (e.g., travel times) are derived from speed data collected
by the sensors. In this study, sensors were installed at potential con-
gested places to monitor traffic operations. A calibrated simulation
model is proposed to emulate traffic operations for the study site, and
then the time-varying traffic information can be generated. With the
travel times collected from the sensors and the simulation model, the
Kalman filtering algorithm is applied to forecast the travel times.

DATA COLLECTION

The data needed for developing a simulation model can be classified
into two categories: geometric data and traffic data. The geometric data
were collected from the construction plans of the study site, including
the lengths of links, the number of lanes, the radius of the curvature,
and the grade percentage and superelevation. Most geometric data
were collected from the construction plans of the study site, while
other data were obtained from the straight-line diagram available
at www.state.nj.us/transportation/framed/stright.htm. In addition, the
GIS database at the New Jersey Institute of Technology contains road-
way pavement and inventory information of the study area, by which
the accurate layout and related geometric information can fill the gaps
that cannot be found from the construction plans. The aerographic
maps taken by the satellite are applied to verify the image of the
study site.

Five acoustic sensors were installed in designated locations within
the study site, as shown in Table 1, to collect traffic data, includ-
ing traffic volumes, speeds, and truck volumes. The collected traffic
data were applied for calibrating a developed simulation model. Sen-
sor 1 measured the traffic on northbound NJ-42 at the start point of
the studied network. The sensor was located 50 ft ahead of the ramp
from the junction of NJ-55 and NJ-42, a potential congestion point in
the network. Sensor 2 collected traffic data on northbound Interstate
76, where the traffic is fed by northbound Interstate 295 and diverges
to northbound Interstate 76. Sensor 3 monitored the traffic condition
ahead of the toll plaza on the Walt Whitman Bridge. All traffic from

Sensor No. Position Nearby Node No.

1 50 feet upstream of conjunction of Route 55 and Route 42  893 

2 15 feet upstream of conjunction of Route 295 and Route 76  811 

3 Downstream right after ramp from Route 130 to Route 76 740 

4 Downstream of ramp to Morgan Street on Route 676  658 

5 50 feet downstream of ramp from M.L.K Blvd to Route 676  565 

 
NOTE: All these sensors are located on northbound Routes 42, 76, and 676. 

TABLE 1 Sensor Locations



northbound Interstate 76 and westbound NJ-130 merged at this loca-
tion. Sensor 4 measured traffic conditions on northbound Interstate
676 between the two bridges, while Sensor 5 collected traffic data on
northbound Interstate 676 as it merges into the Ben Franklin Bridge,
where the traffic from westbound NJ-30 and Linden Avenue merge.
Traffic under worst-case conditions extends to the Martin Luther King
Boulevard exit at downtown Camden and farther to the south. Worst-
case conditions occur on Sunday evening and Monday morning dur-
ing summer as traffic returns from shore areas to the metropolitan
area. The sensor is thus located 0.5 mi from the dead end to gauge con-
gestion. Drivers to Philadelphia can opt for the Walt Whitman Bridge
if the congestion on northbound Interstate 676 is severe.

For commuters traveling from Camden to Philadelphia, two
origin–destination (OD) pairs are considered. The first OD pair is
from the starting point on NJ-42 of the network and ends at the Walt
Whitman Bridge. The second OD pair starts from the starting point
of NJ-42 and ends at the Ben Franklin Bridge. A simulation model
will be developed to emulate the travel times. The travel times of
the second OD pair are predicted in the case study for evaluating
prediction accuracy.

Data for traffic volumes and speeds, including hourly distribu-
tion, can be obtained from the acoustic sensors installed for this proj-
ect. Traffic counts such as annual average daily traffic (AADT) are
collected by data stations operated by the Bureau of Transporta-
tion Data Development of NJDOT (search.panzitta.com/searches/
nfgensearch.cfm).

Travel-Time Prediction Model

Travel time can be affected by such factors as traffic volume, geo-
metric conditions, speed limits, incidents, vehicle composition, and
weather condition. In real-world applications, it is quite difficult to
model the relationship among these factors, especially when the
traffic volume is near roadway capacity. Various techniques have
been used to predict travel times, as discussed in the literature review.
The Kalman filtering algorithm was chosen for the study because it
allows the prediction of the state variable (e.g., travel time) to be con-
tinuously updated. This approach has been used for predicting traf-
fic volume and for real-time demand diversion, as well as estimation
of trip distribution and traffic density. In this study, this technique is
used to perform travel-time prediction based on the traffic data gen-
erated by a microscopic traffic simulation, which is calibrated with
data collected by acoustic sensors. The step procedure for applying
the Kalman filtering algorithm to travel-time prediction is discussed
in the following.

Let x(t) denote the travel time at time interval t that is to be pre-
dicted, let φ(t) denote the transition parameter at time interval t that
is externally determined, and let w(t) denote a noise term that has
a normal distribution with zero mean and a variance of Q(t). The
system model can be written as

Let z(t) denote the observation of travel time on time interval t and
let v(t) denote the measurement error at time interval t that has a
normal distribution with zero mean and a variance of R(t). Since no
traffic parameter other than travel time is involved, the observation
equation associated with the state variable x(t) is given by

z t x t v t( ) = ( ) + ( ) ( )2

x t t x t w t( ) = −( ) −( ) + −( )φ 1 1 1 1( )
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In this application, z(t) is obtained from averaging the travel times
reported by probe vehicles at time interval t. Historic data (e.g., travel-
time data from the same period of a previous day with a similar traf-
fic situation) are used to obtain the transition parameter φ(t), which
describes the relationship between the status of state variable (in
this case, travel time) in two periods. This assumes that the pattern of
travel-time variation over time remains basically the same between
these 2 days.

Assume that in a linear system, all i, j, E[w(i)v(j)] = 0, and let P(t)
denote the covariance of the estimation error at time interval t; then
the filtering procedure is shown as follows:

Step 0. Initialization:

Step 1. Extrapolation:

Step 2. Kalman gain calculation:

Step 3. Update:

Step 4. Let t = t + 1 and go to Step 1 until the preset period ends.

Case Study

To evaluate the performance of the prediction model, a microscopic
simulation model was developed with CORSIM. CORSIM has been
widely applied for simulating traffic operations (15) and evaluating
the implementation of ITS (16) and is one of the best microscopic
models to date. Both geometric conditions and traffic-related data are
required for developing the simulation model that can replicate traf-
fic operations. The link-node diagram of the studied network is shown
in Figure 1. The AADTs over the study network were collected from
seven data stations, as shown in Table 2. The daily traffic data in one
direction have been normalized on the basis of collected AADT and
are shown in Figure 2. Compared with the traffic-count data collected
from the designated sensors, the normalized daily volumes closely
match the real-world traffic distribution over the study site. The hourly
traffic volume distribution over time, for example, at Sensor 1, as
shown in Figure 3, is derived from the traffic distribution detected
by the installed acoustic sensors and AADT collected by the data
stations.

Traffic operations from 6:00 to 10:00 a.m. of the studied site are
simulated by considering time-varying traffic volumes. With the
speed data detected by the acoustic sensors, the simulation model is
calibrated by fine-tuning parameters shown in Table 3, including
car-following sensitivity factor, lane-change parameters, and desired
free-flow speed to reflect the realistic traffic operations.

Error covariance update:  P t I K t P t( ) = − ( )[ ] ( )+ −

State estimate update:  ˆ ˆ ˆx t x t K t z t x t( ) = ( ) + ( ) ( ) − ( )[ ]+ − −

K t P t P t R t( ) = ( ) ( ) + ( )[ ]− −
−1

Error covariance extrapolation:  

P t t P t t Q t( ) = −( ) −( ) −( ) + −( )− +φ φ1 1 1 1

State estimate extrapolation:  ˆ ˆx t t x t( ) = −( ) −( )− +φ 1 1

Set and let and t E x x E x x P= ( )[ ] = ( ) ( ) − ( )[ ]{ } = ( )0 0 0 0 0 02ˆ ˆ
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Finally, by comparing the simulated speeds with the detected speed
data, the average errors are 1.4%, 0.9%, 11.2%, 16.7%, and 9.1% on
Sensors 1 through 5, respectively. This implies that the calibrated sim-
ulation model can replicate traffic operations reasonably well for the
studied corridor. To test the performance and accuracy of the proposed
prediction model, the link travel times generated by CORSIM are
treated as actual travel times for comparison with that provided from
the prediction model.
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Three scenarios classified by three different types of historic data
are proposed for analyzing the accuracy of the predicted travel times.
The first scenario uses the previous time-interval data to predict the
next time-interval travel times. The second scenario takes the travel
time recorded in the same period on the same day a week before the
input, while the third uses the 5-weekday average travel time collected
from the same link a week ago. The outputs are predicted travel times
from the start point of the network to the Ben Franklin Bridge. The

Station 
Number Route Number Milepost Station Location  AADT 

7-4-103 676 0.70 
BETWEEN I-76 &
MORGAN BLVD 69,252 

7-9-355  676 2.50 
JUST NORTH OF
ATLANTIC AVE 61,047 

7-4-104  676 2.95 
AT HADDON AVE

OVERPASS 58,065 

7-5-001 76 0.50 
JUST SOUTH

OF MARKET ST.
112,310  

7-1-24  76 1.60 
AT NICOLSON ROAD

OVERPASS 136,310  

7-2-11  76 2.40 
WALT WHITMAN

 BRIDGE, TOLL 99,330 

7-4-303  42 12.20 
BETWEEN

RT 544 & NJ 55 97,184 

TABLE 2 Traffic Counts Look-Up Results
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Variable Description Default Value  Calibrated Value  Unit  

New car-following sensitivity factor 
for driver type 1 125 120 

New car-following sensitivity factor 
for driver type 2 115 110 

New car-following sensitivity factor 
for driver type 3 

105 100 

New car-following sensitivity factor 
for driver type 4 95 90 

New car-following sensitivity factor 
for driver type 5 85 80 

New car-following sensitivity factor 
for driver type 6 

75 70 

New car-following sensitivity factor 
for driver type 7 65 60 

New car-following sensitivity factor 
for driver type 8 55 50 

New car-following sensitivity factor 
for driver type 9 

45 40 

New car-following sensitivity factor 
for driver type 10 35 30 

Hundredths of  
Seconds 

New value for Pitt car following 
constant 10 5 Feet 

Time to complete a lane-change  
maneuver 

20 10 Tenths of Seconds 

% of drivers desiring to yield right-of-
way to lane-changing vehicles 

attempting to merge 
20 30 Percentage 

Multiplier for desire to make a 
discretionary lane change 5 8 Tenths of Units 
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FIGURE 3 Traffic distributions over time at Sensor 1.

TABLE 3 Default and Calibrated Parameters



best data for least prediction error are identified and applied into
the proposed predictive model. It was found that the first scenario
provided the best results for the study site during peak periods.

With the prespecified covariance parameters R(t) = 50, the Kalman
filtering algorithm updates the state variable (travel-time) iteratively.
In this case, both the real-time information and the previous time inter-
val information are applied to predict the travel time in the next time
interval. The sample process of the Kalman filtering algorithm is illus-
trated in Table 4, and the final results with the use of 5-min traffic
information are shown in Figure 4. (Note that Node 899 is the starting
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point of the studied corridor, where NJ-55 and NJ-42 intersect. Node
497 is the end point, at the Ben Franklin Bridge.)

The selected prediction error indices for evaluating the accuracy
of the developed model, including mean absolute relative error
(MARE ), root relative square error (RRSE ), and maximum relative
error (MRE ), formulated in Equations 3, 4 and 5, are applied in this
analysis:

MARE
N

x t x t

x tt

=
( ) − ( )

( )∑1
3

ˆ
( )

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Time  True  Historic 
∧
+)(Xt  Error   Φ (t)  Rt Qt Kt 

∧
−)(Xt  Pt (-)  Pt (+)  Measured 

6:00-6:05 557.0 557.0 557.0  1 50 1    0 557.0 

6:05-6:10 542.8 542.8 556.7 2.61 0.97 50 1 0.02 557.0 1.00 0.98 542.8 

6:10-6:15 537.8 537.8 542.3 0.88 0.99 50 1 0.04 542.5 1.93 1.86 537.8 

6:15-6:20 549.2 549.2 538.0 2.17 1.02 50 1 0.05 537.3 2.83 2.67 549.2 

6:20-6:25 547.9 547.9 549.3 0.28 1.00 50 1 0.07 549.4 3.79 3.52 547.9 

6:25-6:30 544.3 544.3 547.7 0.68 0.99 50 1 0.08 548.0 4.51 4.13 544.3 

6:30-6:35 543.0 543.0 544.0 0.21 1.00 50 1 0.09 544.1 5.08 4.61 543.0 

6:35-6:40 546.0 546.0 543.0 0.61 1.01 50 1 0.10 542.7 5.59 5.03 546.0 

6:40-6:45 530.9 530.9 544.4 2.84 0.97 50 1 0.11 546.0 6.08 5.42 530.9 

6:45-6:50 521.6 521.6 528.5 1.48 0.98 50 1 0.11 529.4 6.13 5.46 521.6 

6:50-6:55 532.2 532.2 520.7 2.44 1.02 50 1 0.11 519.2 6.27 5.57 532.2 

6:55-7:00 543.6 543.6 532.8 2.27 1.02 50 1 0.12 531.3 6.80 5.99 543.6 

7:00-7:05 529.9 529.9 542.4 2.70 0.97 50 1 0.13 544.2 7.24 6.33 529.9 

7:05-7:10 536.5 536.5 529.6 1.46 1.01 50 1 0.12 528.6 7.01 6.15 536.5 

7:10-7:15 516.9 516.9 533.7 3.73 0.96 50 1 0.13 536.2 7.30 6.37 516.9 

7:15-7:20 504.6 504.6 513.1 1.92 0.98 50 1 0.12 514.3 6.92 6.08 504.6 

7:20-7:25 553.8 553.8 507.2 9.56 1.10 50 1 0.12 500.9 6.79 5.98 553.8 

7:25-7:30 542.3 542.3 554.7 2.65 0.98 50 1 0.14 556.7 8.20 7.05 542.3 

7:30-7:35 555.3 555.3 544.8 2.19 1.02 50 1 0.13 543.2 7.76 6.71 555.3 

7:35-7:40 539.0 539.0 555.2 3.49 0.97 50 1 0.14 557.8 8.04 6.93 539.0 

7:40-7:45 550.2 550.2 540.4 2.06 1.02 50 1 0.13 538.9 7.53 6.54 550.2 

7:45-7:50 522.1 522.1 547.7 5.66 0.95 50 1 0.14 551.7 7.82 6.76 522.1 

7:50-7:55 522.6 522.6 520.1 0.56 1.00 50 1 0.12 519.7 7.09 6.21 522.6 

7:55-8:00 531.3 531.3 521.9 2.02 1.02 50 1 0.13 520.6 7.22 6.31 531.3 

NOTE:
(0)  Time interval. 
(1)  True value of the state variable, in this case set equal to the measured travel time 

(seconds), (1)t = (12)t. 
(2)  Historic travel time (seconds), which could provide the state transition matrix F. Since the 

travel time of previous time interval were taken as the historic data, (2)t = (12)t. 
(3)  Updated state estimated value, (3)t = (9)t + (8)t * [(12)t- (9)t]. 
(4)  Prediction error percentage, (4) t = abs [(9)t-(1)t]/(1)t * 100 %. 
(5)  State transition matrix Φ(t), (5)t = (2)t/(2)t-1. 
(6)  Covariance matrix of observational (measurement) uncertainty, (6)t = 50. 
(7)  Covariance matrix of process noise in the system state dynamics, (7)t = 1. 
(8)  Kalman gain matrix K (t), (8)t = (10)t * [(10)t+(6)t]-1. 
(9) State estimates (seconds), (9)t = (5)t-1 * (3)t-1. 
(10) Estimation error covariance, (10)t = (5)t-1 * (11)t-1 * (5)t-1 + (7)t-1. 
(11) Updated estimation error covariance, (11)t = [1-(8)t] * (10)t. 
(12) Measured travel time (seconds) from simulation model. 

TABLE 4 Travel Times Predicted with Kalman Filtering Algorithm



Note that N is sample size, while x(t) and x̂(t) represent the actual
and predicted travel times, respectively. The values of MARE, RRSE,
and MRE are 2.8%, 3.8%, and 9%, respectively, which implies that
the developed model performed reasonably well. The Shapiro–Wilk
test was also performed to check the noise distribution. The result
shows that a P-value equal to 0.612 is greater than 0.5. It implies that
the measurement noise follows a normal distribution, which satisfies
the condition for applying the Kalman filtering algorithm in this study.

CONCLUSIONS

A method for predicting travel times for motorists traveling in the
study site was developed, and the Kalman filtering algorithm was
applied. Five acoustic sensors were installed at potential congested
places in the studied area to monitor traffic conditions. The collected
information, including speed and volume estimates by the sensors,
was used to calibrate the developed simulation model to evaluate the
developed predictive model. The Kalman filtering algorithm was

MRE
x t x t

x tt
=

( ) − ( )

( )
max

ˆ
( )5

RRSE
x t

x t x t

x t
x t

t

t

=
( )

( ) − ( )

( )






( )
∑ ∑1

4
2ˆ

( )
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applied to predict the travel time with the simulated data. The historic
data (travel times) for deriving the state variable transition parame-
ter were chosen from the previous time interval. The covariances for
measured and state variables were set to be constant. Traffic during
the period of 6:00 to 10:00 a.m. was selected for testing the predic-
tive model, and during this period, the traffic conditions experienced
a dramatic change because of peak-period traffic flow. The evalua-
tion results show that the developed prediction model could generate
satisfactory results. With reliable predicted travel times, better route
choice decisions by motorists can be expected.

Four factors should be researched and addressed for developing
more robust prediction algorithms. First, the relationship between the
covariance for measurement noise and process noise should be inves-
tigated from the real-world information, such as traffic volume, travel,
speeds, or travel times for each time interval. Thus, a covariance
parameter assumed in the Kalman filtering algorithm can vary with
the change in the real-world data rather than being set as a constant.
This extension may be necessary to increase prediction accuracy in
real-world applications. Second, the relationship between the coeffi-
cient of variation of the state variables and prediction accuracy should
be explored. More statistic analysis should be carried out to provide
not only mean value but also the variance of the prediction results.
Third, the algorithm should be tested and calibrated for different traf-
fic conditions—for example, optimizing the prediction-updating
interval to catch the change in traffic condition quickly and accu-
rately. Fourth, according to the characteristics of traffic distribution,

FIGURE 4 Predicted travel time from Node 899 to Node 497 (length = 40,730 ft).
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applying the best historic data set as a seed to predict accurate and
timely information under various traffic conditions would be another
extension of this study.
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