[414]

LXIX. Obfervations of the Tranfit of Venus over the Sun, June 3, 1769 ; made by Mr. Owen Biddle and Mr. Joel Bayley, at Leweftown, in Pennfylvania. Communicated by Benjamin Franklin, LL.D.F.R.S.

Read Dec. 21 , 1769.

ON the 26th of May, 1769, Joel Bayly and myfelf arrived at Leweftown (on Cape Hinlopen at the mouth of Delaware Bay), being ordered there, by the American Philofophical Society, held at Philadelphia, for promoting ufeful knowledge, to take an obfervation of the enfuing tranfit of Venus over the Sun's dife ; and immediately fet about fixing our time-piece, in a houfe (which we hired) on the fouth ftreet of the town, where we were moft likely to be free from interruption, and had an open view of the Sun and ftars for our obfervations. We fet a ftrong oak poft in the ground, to which we fcrewed our clock cafe, refting the bafe of it on the ground, the face of it fronting a door which opens to the fouthward, fo as to be convenient for us to hear the beat of the clock, where we intended to fix our telefcopes and inftrument for taking equal altitudes. We then fet a poft in the g:ound for the equal altitude inftrument, which was

$$
[415]
$$

not fo good as I wihhed, but much better than a Hadley's quadrant, as we found by experience, and the beft we could procure in time for our purpofe. It was a theodolite, with telefcopic fights, in which there were crofs hairs; it had a firit level to adjuft the plain of the inftrument horizontally ; and alfo one applied to the telefcope parallel with its axis, and at right angles to the other firit level. By means of thefe two levels and adjufting fcrews, we found we could adjuft it very nearly, the inftrument being a very good one of the kind. With this we fet our clock, by taking equal altitudes of the Sun, which we corrected by the tables publifhed in a pamphlet, intitled, Inffructions relative to the enfuing Tranfit of Venus, \&cc. by the Rev. Mr. Nevil Mafkelyne. The 27 th, we got fome good correfponding altitudes of the Sun, by which we fet our clock; and took equal altitudes of fome of the fixed ftars, to prove the rate of our clock. After this it continued cloudy, with rain at times, and a high wind at north-eaft, till the 3 Ift , when the clouds broke a little. During this time, we employed ourfelves in meafuring the diftance of our place of obfervation from the ftone fixed at the beginning, or eaft end, of the eaft and weft line, which is the boundary between the three lower counties and Maryland, and is fituate on Fenwick's Illand; the latitude and longitude of this place being accurately determined by Meffieurs Dixon. and Mafon.

The meridional difference of the latitude of the place of our obfervation, north from Fenwick's Ifland, at the beginning of the eaft and weft line, as before defribed, being the eafternmoft end of the fouthern boundary:

[416]

boundary between the lower counties and Maryland, is $19^{\prime} 41^{\prime \prime} 24^{\prime \prime \prime}$; and the meridional difference of longitude of the place of our obfervation, weff from: the point aforefaid, in Fenwick's Illand, $\xi^{\prime} 45^{\prime \prime}$ of a degree. There data, with the latitude and longitude of Station Point, will determine exactly the place of obfervation.
June 2, the weather being clear, had good correfponding obfervations of the Sun.
June 3 , the weather being remarkably fine, had good obfervations to fet our clock. AD A out 12 o'clock began to direct our glaffes, to the Sun, keeping it continually in the field from then to the time the obfervation was paft. We We agreed to watch our telefcope one minute in turn, till about feven or eight minutes before the contact was expected, left, by too fteady an attention to the glaffes, our fight thould be impaired, fo as to difable us from difcerning the contact clearly. I had left my telefcope the minute preceding the contact, intending to apply myfelf fteadily to it, from the next minute, until the obfervan tion was paft; and when the 48 th fecond was called, $I_{\text {applied myelf }}$ to the glafs, and by the time three feconds were elapfed, I perceived, on that part of the Sun's limb where I expected the contact, a fmail iompreffion, which proved to be the limb of Venus in consact with the Sun. All the limb of the Sun, which appeared at that time in the field of the telefcope, had a fmall undilatory motion, which, I apprsiend, was owing to denee vapours, which arofe at that place, being neaso the dea, At Venus's fint apt arance to mes it was only likelj one of thofe waves on the limb or border of the Sun, increared in

$$
[417]
$$

fo fmall a proportion, that I remained doublful for feveral feconds, whether it was any thing elfe; thus it continued, making a deeper impreffion, with that tremulous motion, for about ten feconds, when the tremor where Venus was in contact ceafed, and the indenture was truly circular, with an even termination.

My abfence from the telefcope, juft before the contact occurred, deprived me of an opportunity of judging whether there was any appearance of an atmofphere preceding the weftern limb of Venus in contact; but when Venus had entered nearly one half of its diameter into the Sun's dife, my companion and myfelf faw a luminous crefcent, which enlightened that part of Venus's circumference which was off the Sun, fo that the whole of her circumference was vifible, but did not continue fo until the internal contact ; and at the time of the firft internal contact, the eaftern or external limb of Venus feemed to be united to the Sun's limb by a black protuberance or ligament, which was not broke by the entrance of the thread of light, till four fecondsafter that the regular circumference of Venus feemed to coincide with the Sun's.

The telefcope I made ufe of for viewing the tranfit, was a reflecting one, belonging to the Philadelphia Library Company, the fpeculums of which are $2 \frac{1}{2}$ feet apart, and the lenfes in the eye tube four inches apart ; it was the leaft magnifying power that I ufed, as I found the tremulous motion too much magnified by the other power. The fmall one was in good order, and defined the Sun's limb, and fpots on its difc, very clearly. I had applied a polar axis

Vol. LIX.
Hhh

[418]

to -it, and made fome rack-work, by which I could keep the fame part of the Sun's limb in the field with eafe; my companion was not fo well provided with a telefcope, the one he ufed being of Dollond's refracting glaffes of $4 \frac{1}{2}$ feet. This we fixed, with a ball and focket, to a poft, by which it was eafily directed to the Sun. Thus furnifhed, we found the contacts to take place as follows, reduced to mean time.

It muft be noted, the internal contact, given by Owen Biddle, is at four feconds before the thread of light had broken the dark ligament or protuberance, by which Venus's limb was united to the limb of the Sun, that being the time he eftirnated the two limbs to be in contact.

The internal contacts, we think, may be relied on; the external happening fooner than expected, occafioned a doubt at its appearance, which made the exact fecond of its appearance a little uncertain.

Signed,
Philadelphia, June 9,1769 .

Owen Biddle.
Copy taken in hafte, but the times examined by Owen Biddle.

The

[419]

The times of the contacts of Venus with the limb of the Sum, as feen by Owen Biddle and Joel Bayley on Cape Hinlopen; with the true difference of latitude and departure of the place of their obfervation, from the Middle Point between Fenwiok's Illand and Chefopeak Bay, are as follows, viz.
h 1 / 1
$\left.\begin{array}{llll}\text { External contact at } & \left.\begin{array}{llll}2 & 11 & 53 \\ \text { Internal contact at } & 2 & 29 & 53\end{array}\right\} \text { mean time }\end{array}\right\}$
\qquad
The difference of latitude of the
place of obfervation, north of
Middle Point.
The meridian diftance of the $\begin{aligned} & \text { place of obfervation, eaft of } \\ & \text { Middle Point. }\end{aligned} 30,6356$ miles

The latitude and longitude of Middle Point were taken by Meffieurs Dixon and Mafon, and, as we fuppofe, communicated to the Royal Society, but we are not yet acquainted with it.
N. B. As we are not acquainted with the exact meafure of a degree of latitude, agreeable to the above gentlemen's meafurement, we have fent the difference of latitude and longitude in miles and decimal parts, as it may be reduced to greater certainty thereby.

[420]

Remarlss by the Astronomer Royal.

From the data given above, and the length of a degree of latitude, found by Meffieurs Mafon and Dixon, in theee parts $=68,8,86$ Englifh miles, the difference of latitude of Leweftown and the Middle Point above mentioned (which is the fame with the point A; fee Mefieurs Mafon's and Dixon's meafure of a degree, Philof. Tranfact. vol. LVIII. p. 27^{6}) is $19^{\prime} 53^{\prime \prime}$; but the latitude of the point A was found, by Meffieurs Mafon and Dixon $3^{8 \circ} 27^{\prime}$ $34^{\prime \prime}$; therefore that of Leweftown is $38^{\circ} 47^{\prime} 27^{\prime \prime}$ north; and the difference of its meridian, and that of the point A, or their difference of longitude, is $34^{\prime} 0^{\prime \prime}=2^{\prime}{ }^{16^{\prime \prime}}$ of time, Leweftown being to the eaft. But if the difference of longitude of Leweftown eaft of the Stones on Fenwick's Ifle be fuppofed truly given, in the former account, $5^{\prime} 45^{\prime \prime}$ of a degree, then the difference of longitude of Leweftown and the point A will come out about I^{\prime} of a degree, or $4^{\prime \prime}$ of time lefs; for Mr. Dixon acquaints. me, that the diftance of the Stone on Fenwick's Ine, eaft of the point A, is 35 Englifh miles wanting 100 yards. Now this is equal to $30^{\prime} 26^{\prime \prime}$ of a great circle $=3^{8^{\prime}} 51^{\prime \prime}$ of longitude; from which fubtracting $5^{\prime} 45^{\prime \prime}$, there remain $33^{\prime \prime} 6^{\prime \prime}$ for difference of longitude of Leweftown and Point A $=2^{\prime} 12^{\prime \prime} \frac{1}{2}$ of time, or $3^{\prime \prime \frac{x}{2}}$ lefs than found before; and this latter I take to be neareft the truth. If this be fo, Leweftown is very nearly under the fame meridian with the fouthernmoft part of the city of Philadelphia, or more accurately $13^{\prime \prime}$ of longitude, anfwering

[421]

anfwering to $I^{\prime \prime}$ of time, eaft of it. For, by Meffieurs Mafon's and Dixon's meafure of a degree, the point N (fee Philof. Tranfact. Vol. LVIII. p. 276) is $2^{\prime} 19^{\prime \prime}$ of longitude weft of the point A; and N, by meafurement, is 3 I Englifh miles due weft of the fouthernmoft part of the city of Philadelphia, anfwering to $35^{\prime} 12^{\prime \prime}$ of tongitude; from which fubtracting $2^{\prime \prime} 19^{\prime \prime}$, there remain $32^{\prime \prime} 53^{\prime \prime}$, anfwering to $2^{\prime} 11^{\prime \prime \frac{1}{2}}$ of time, for the difference of tongitude of the fouthernmoft part of Philadelphia, eaft of the point A. But Leweftown is found above to be $33^{\prime} 6^{\prime \prime}$ of longitude $=2^{\prime} 12^{w-\frac{x}{2}}$ eaft of the point A, and confequently is $13^{2 \pi}$ of longitude, or about $\mathrm{I}^{4 \prime}$ of time eaft of the fouthernmoft part of the city of Philadelphia.
nwofowal smit Nevil Mafkelyne, d oll e'גjiwn9' no e9note ody to fless awos
 to sbutignt to 9xas15flib ods norlt, 991g9b \&

 os ló of loupg ai eirlt woK .ebrsy oor

 awoflowsil to gbulraol to 93ng
 (ons orif flgison od of sxles I tgtisl aids brts
 ght to ting fiomengdtrol shts dive cisibitom

LX. Obfer.

