BRIEF REPORT Is better beautiful or is beautiful better? Exploring the relationship between beauty and category structure Megan Sanders & Tyler Davis & Bradley C. Love Published online: 14 December 2012 # Psychonomic Society, Inc. 2012 Abstract We evaluate two competing accounts of the rela- tionship between beauty and category structure. According to the similarity-based view, beauty arises from category structure such that central items are favored due to their increased fluency. In contrast, the theory-based view holds that people’s theories of beauty shape their perceptions of categories. In the present study, subjects learned to catego- rize abstract paintings into meaningfully labeled categories and rated the paintings’ beauty, value, and typicality. Inconsistent with the similarity-based view, beauty ratings were highly correlated across conditions despite differences in fluency and assigned category structure. Consistent with the theory-based view, beautiful paintings were treated as central members for categories expected to contain beautiful paintings (e.g., art museum pieces), but not in others (e.g., student show pieces). These results suggest that the beauty of complex, real-world stimuli is not determined by fluency within category structure but, instead, interacts with people’s prior knowledge to structure categories. Keywords Aesthetic preferences . Categorization . Halo effect . Fluency Beauty is mysterious. We know it when we see it, but it eludes explanation. One facet of beauty that has been explored is its relationship to category structure, and in psychology, two possible relationships have been sug- gested. The first line of research explores how beauty arises from the feature structure of categories. For ex- ample, golden retrievers may be considered beautiful dogs because they are typical of the category dogs, sharing many features with other dogs. A second line of research instead explores how beauty contributes to the structure of categories, as when beautiful individuals are perceived to be better leaders and more electable (Berggren, Henrik, & Poutvaara, 2010). Together, these two views present a conundrum: Beauty is viewed as both arising from and contributing to the structure of categories. The present study disentangles these two accounts. The first line of research, which we will refer to as the similarity-based view, holds that similarity relationships among category members play an important role in determin- ing beauty. According to this view, items that are central by virtue of sharing features with other category members tend to be judged typical of their category and are processed more fluently (Nosofsky, 1988; Rosch, 1975; Storms, De Boeck, & Ruts, 2000). Fluency and familiarity are theorized to increase positive affect (Zajonc, 1968), which, in turn, is thought to increase perceptions of beauty (Reber, Schwarz, & Winkielman, 2004). For example, among a golden retriever, a daschund, and a great dane, the golden retriever is the most similar to other dogs in its size, proportions, and other char- acteristics and should be judged the most typical and the most beautiful of the three, according to the similarity-based view. Analogously, face morphs (Langlois et al., 2000), line draw- ings of animals (Halberstadt & Rhodes, 2003), and a variety of other real-world (Halberstadt, 2006) and artificial (Winkielman, Halberstadt, Fazendeiro, & Catty, 2006) stimuli Electronic supplementary material The online version of this article (doi:10.3758/s13423-012-0356-1) contains supplementary material, which is available to authorized users. M. Sanders (*) The Ohio State University, 29 W Woodruff Ave, Ramseyer Hall 169, Columbus, OH 43210, USA e-mail: sanders.539@osu.edu T. Davis The University of Texas at Austin, Austin, TX, USA B. C. Love University College London, London, UK Psychon Bull Rev (2013) 20:566–573 DOI 10.3758/s13423-012-0356-1 http://dx.doi.org/10.3758/s13423-012-0356-1 with features that are central for their category are judged to be more beautiful than atypical category members. Importantly, the similarity-based view predicts that, by virtue of being fluently processed, highly typical objects should be viewed as the most beautiful. According to a second line of research, referred to as the theory-based view, people’s perceptions of an item’s beauty combine with prior beliefs about the category to shape the structure of the category. Rather than arising from category structure, beauty can be a determinant of category structure. This view follows from theories of categorization suggest- ing that people’s prior beliefs, expectations, and intuitive theories of the category, rather than featural-similarity rela- tionships among category members, determine typicality structure (Heit, 1997; Murphy & Medin, 1985; Wisniewski & Medin, 1994). On this view, Yao Ming is a good example of a professional basketball player because he satisfies cer- tain expectations about the category (e.g., high scoring percentage, good rebounder, etc.), not because he shares many features with other category members. In the case of basketball players, beautiful players are not necessarily viewed as central or typical category members, because beauty does not play a central role in people’s intuitive theories concerning basketball. However, in other domains, such as art, beauty does play a prominent role in people’s intuitive theories and, therefore, should influence category structure. Thus, depending on the role beauty plays in people’s prior beliefs and expectations about a category, the theory-based view suggests that being beautiful (or not) can make an object either more or less typical of that category. One example of a theory-based attribution is the halo effect (Asch, 1946; Thorndike, 1920), whereby attractive individuals are perceived as more socially competent (Eagly, Ashmore, Makhijani, & Longo, 1991; Feingold, 1992), happier (Dion, Berscheid, & Walster, 1972), more trustworthy (Wilson & Eckel, 2006), and more competent in their occupations than others (Langlois et al., 2000). From a theory-based view, beautiful objects are not beautiful be- cause they are typical or share more features with other category members. Rather, beauty can make an object seem more typical of its category when the category is associated with other positive characteristics (e.g., intelligence) or peo- ple have a prior expectation about how beauty relates to the category. Thus, we broadly define similarity-based views as bottom-up processing of category members’ features and theory-based views as top-down reasoning based on catego- ry labels. These two views, although divergent, are not necessarily mutually exclusive: There are multiple determi- nants of category typicality (e.g., Barsalou, 1985; Lynch, Coley, & Medin, 2000), and bottom-up and top-down pro- cesses could be active simultaneously. However, we clearly define the views such that they make different, testable predictions. We evaluated the two views using a task in which sub- jects learned to categorize works of abstract modern art as pieces from a college seniors’ art show or an art museum. The paintings used in our task were composed by profes- sional artists (Table 1), were largely unfamiliar to the subject pool, and were found in a previous multidimensional scaling (MDS) study to vary on two psychological dimensions: geometry, or how curvilinear versus angular a painting was, and complexity, or how “busy” the painting appeared (Fig. 1). The paintings were grouped, between subjects, into two categories on the basis of their similarity along one of the dimensions. Some subjects learned a category structure in which the paintings were grouped on the basis of differ- ences in geometry, whereas other subjects learned a struc- ture in which paintings were grouped on the basis of differences in complexity (Fig. 2). We followed others (Palmeri & Blalock, 2000; Wisniewski & Medin, 1994) in using meaningful category labels for these groupings to test the effects of theories; both the art museum and the student art show were perceived as equally likely sources of the paintings (see the Supplementary material). By systematically manipulating the grouping of paintings and the category labels associated with them, it is possible to test key predictions from both the similarity- and theory- based views of beauty. Both views predict that typicality and beauty will be correlated but differ in terms of the direction of the correlation and how the relationship between beauty and typicality will differ between the art museum and stu- dent art show category labels. The similarity-based view predicts that featural similarity drives typicality and processing fluency, thereby affecting perceptions of beauty. According to this view, perceived typicality should differ depending on how the paintings are grouped. Because the present study uses two strongly con- trasting categories, items that are furthest from members of the opposing category in the MDS space (i.e., share the least number of features with opposing category members) are processed most fluently and are perceived as more typical (Davis & Love, 2010). Thus, the paintings at the extremes of the dimension used for grouping (e.g., highly complex paintings or very simple paintings, when the grouping di- mension is complexity) should be rated the most typical of their categories, the most fluently processed, and hence, from a similarity-based view, the most beautiful. In contrast, the theory-based view does not predict that changes in typicality and fluency caused by differences in grouping will affect perceptions of beauty. Rather, this view suggests that perceived beauty should impact typicality structure, as per the halo effect. More important, it also predicts a difference in this effect depending on category label, because subjects may have different prior expectations Psychon Bull Rev (2013) 20:566–573 567 Table 1 Paintings used in both the multidimensional scaling (MDS) study and the rating study Title Artist Year MDS coordinate: geometry MDS coordinate: complexity Mean beauty rating SD Cadmium Red Over Black Adolph Gottlieb 1959 −1.73 −1.817 2.86 1.72 Octavio Paz Suite–Nocturne VI Robert Motherwell 1988 −2.516 −1.524 2.16 1.60 Beside the Sea #42 Robert Motherwell 1966 −2.285 −1.133 4.40 1.80 Ochre and Black Adolph Gottlieb 1962 −1.549 −0.323 2.53 1.55 Rite of Passage III Robert Motherwell 1980 −1.522 −1.265 2.81 1.49 Trees in Blossom Piet Mondrian 1912 −1.37 2.073 4.32 1.67 Unknown Andre Masson 1940s −2.139 1.143 4.41 1.81 Mallarme's Swan Robert Motherwell 1944 −0.146 0.97 3.35 1.50 Composition VII Wassily Kandinsky 1913 −0.581 2.975 5.84 1.38 Pictograph–Tablet Form Adolph Gottlieb 1941 −0.788 1.16 3.77 1.65 Red Square: Painterly Realism of a Peasant Woman in Two Dimensions Kasimir Malevich 1915 1.437 −1.769 2.06 1.64 Composition with Red, Blue and Yellow Piet Mondrian 1930 2.148 −1.094 3.22 1.82 Red, Orange, Tan and Purple Mark Rothko 1954 0.93 −0.705 3.25 1.83 Collage with Squares Arranged According to the Laws of Chance Hans Arp 1916 1.264 −0.462 2.69 1.54 Composition No. 10 Piet Mondrian 1940 2.095 −0.533 3.23 1.87 Composition Piet Mondrian 1916 1.087 1.217 3.89 1.60 Composition VIII Wassily Kandinsky 1923 0.765 2.007 5.26 1.72 Suprematist Painting Kasimir Malevich 1916 2.02 0.045 4.00 1.53 Victory Boogie-Woogie Piet Mondrian 1943– 1944 2.21 0.582 3.34 1.48 Proun 12E El Lissitzky 1923 1.051 0.103 3.56 1.55 Fig. 1 The stimuli organized into four quadrants defined by two dimensions, geometry and complexity. Geometry describes the angularity of the lines and shapes in a painting, whereas complexity arises from the number of shapes and degree of overlap in a painting 568 Psychon Bull Rev (2013) 20:566–573 about how beauty relates to art museums and student art shows. Appearing in an art museum indicates that a piece is considered by experts to be beautiful or valuable (Danto, 1981). Artworks are also expected to be beautiful when created by famous artists (Isham, Ekstrom, & Banks, 2010), and the same pieces are perceived as more beautiful when created by a professional rather than by an amateur (Duerksen, 1972) or by a computer (Kirk, Skov, Hulme, Christensen, & Zeki, 2009). We confirmed that these find- ings extend to the paintings in our stimulus set (see the Supplementary material). Thus, subjects likely expect that paintings appearing in an art museum, a place populated with the work of famous, professional artists, will be beau- tiful. In contrast, appearing in a student art show does not carry this strong positive connotation. Specifically, the theory-based view predicts that beauty will be insensitive to the groupings of paintings along the two dimensions (geometry and complexity) and the associated changes in typicality and fluency. Instead, beauty will lead to increases in typicality, but only when the paintings are labeled as art museum pieces. Method Subjects Ninety-three undergraduates from the University of Texas participated for class credit. Five were excluded for failing to exceed chance in the learning phase; mean categorization accuracy for all others was 81.7 % (SD 0 0.08). Materials Stimuli consisted of 20 abstract paintings (see Fig. 1) with- out a recognizable topic to ensure that subjects focused on paintings’ perceptual characteristics instead of their subject matter. These paintings were determined to vary continu- ously along two perceptual dimensions, geometry and complexity. Design and procedure Categorization task Paintings were grouped into four quadrants depending on their values along the geometry and complexity dimensions (see Fig. 1). Counterbalanced across subjects, two adjacent quadrants (roughly matching on geometry or complexity) were assigned a category label (“student art show” or “art museum”), with the remaining stimuli assigned the other label (see Fig. 2). During learning, each subject completed three trial blocks, which consisted of the individual presentation of the 20 stimuli in a random order, for a total of 60 learning trials. On each trial, subjects were presented with a painting and were instructed to categorize it, on the basis of its visual forms, as a piece from an art museum or a student art show. Fig. 2 The four possible combinations of category structure and labeling. In the categorization task, subjects were trained to categorize paintings as either student art show or art museum pieces. Paintings with roughly the same level of either geometry or complexity (see Fig. 1) were grouped together to form a category Psychon Bull Rev (2013) 20:566–573 569 After they responded, the screen cleared, and feedback was presented for 3,000 ms, indicating the correct category assignment. Following feedback, a white screen was pre- sented for 1,000 ms. Rating tasks After the category-learning task, subjects were instructed to rate each painting’s typicality (how well the painting repre- sented its category), beauty (how appealing its visual forms were), and value (how valuable it was). The typicality, beauty, and value rating tasks followed this instruction in that order. Within each task, each painting was presented once in a random order. On each trial, subjects were pre- sented with a painting and, 2,500 ms later, a 7-point scale with low-, center- and high-points labeled not at all, some- what, and extremely in terms of the characteristic to be rated in that task. After subjects keyed their rating, a white screen was presented for 1,500 ms. Results Relationships among the basic variables1 Ratings of typicality, beauty, and value had high interrater reliability, as measured by Cronbach’s coefficient alpha (.81, .97, and .93, respectively). For descriptive purposes, we aver- aged over subjects to obtain mean ratings for beauty, value, and typicality for each painting. Beauty and value ratings were highly correlated in both categories [art museum, r 0 .91, t (18) 0 9.38, p < .001; student art show, r 0 .97, t(18) 0 16.16, p < .001], suggesting that subjects considered the same quality of the paintings when rating both of these characteristics. Overall, neither beauty nor value was significantly correlated with typicality [beauty, r 0 .14, t(18) 0 0.60, n.s.; value, r 0 .23 t(18) 0 1.00, n.s.]; we explore the impact of category labels on this relationship in our hypothesis tests below. However, given the strong correlation between beauty and value, subsequent analyses focused on beauty, the main variable of interest. Many of the measures of processing fluency were also correlated: Typicality and categorization reaction time were significantly negatively correlated, r 0 −.56, t(18) 0 −2.89, p < .01; typicality and categorization accuracy were significantly positively correlated, r 0 .54, t(18) 0 2.69, p 0 .015; and reaction time and categorization accuracy were negatively correlated, but not significantly, r 0 −.37, t(18) 0 −1.68, n.s. Similarity-based versus theory-based views of beauty2 Similarity- and theory-based views predict different patterns of results in terms of how the category structure (grouping of stimuli with respect to geometry or complexity dimen- sions) and category label (art museum or student art show) factors will relate to our measures of fluency and subjects’ perceptions of beauty. The similarity-based view predicts that stimulus grouping should affect perceptions of typical- ity, processing fluency, and subjects’ perceptions of beauty. The theory-based view suggests that beauty will not be affected by changes in category structure or processing fluency but, rather, will lead beautiful items to be perceived as more typical and processed more fluently when they are labeled with the art museum label. We address each of these questions in a series of cross-classified random effects mod- els that test the relationships between category structure, beauty, and measures of typicality and fluency while con- trolling for subject- and painting-level variability (Bayeen, Davidson, & Bates, 2008). Conceptually, these random ef- fect models are akin to running a separate regression for each subject and testing whether the mean slopes (bs below) relating our variables (e.g., typicality and beauty) are signif- icantly different from zero across subjects. However, by estimating each subject’s slope simultaneously, we are able to pool information from the group-level data to better estimate individual subject slopes and simultaneously ac- count for mean differences in our measures (e.g., beauty) between paintings. Category structure affects processing fluency and perceptions of typicality, but not beauty Because the similarity-based view does not predict differ- ences based on label, ratings were collapsed across the two label conditions. Following previous research using strongly contrasting category pairs (Davis & Love, 2010), typicality and measures of processing fluency increased as a painting became more distant from the boundary separating catego- ries along a grouping dimension (e.g., more angular in the high geometry category or more curvilinear in the low 1 When these ratings were examined in light of the MDS results, more geometric paintings were rated more typical, r 0 .62, t(18) 0 3.36, p 0 .003, and more complex paintings rated were rated more beautiful, r 0 .81, t(18) 0 5.84, p < .001; these relationships did not vary as a function of category label. Complexity was included as a factor in all models that included beauty to control for the correlation between the two, and doing so did not change the nature of the results. Additionally, beauty was centered according to each subject’s mean in all models to reduce colinearity in the random effects. 2 The relationships between distance-to-the-bound and fluency, distance-to-the-bound and beauty, and beauty and fluency are tested in groupings made according to theory (collapsed across category labels when testing the similarity-based view and collapsed across grouping conditions when testing the theory-based view). However, these relationships are consistent across all possible groupings and across experimental condition, which was counterbalanced between subjects. 570 Psychon Bull Rev (2013) 20:566–573 geometry category, when paintings were grouped with re- spect to geometry). Distance-from-the-bound significantly predicted typicality, b 0 .21, t(87) 0 2.58, p 0 .01, reaction time, b 0 −.12, t(87) 0 −4.78, p < .001, and probability correct, b 0 .33, z 0 5.27, p < .001, such that as paintings became more extreme in relation to the grouping dimension, they were perceived as more typical and were categorized more quickly and more accurately. However, distance-from- the-bound did not affect ratings of beauty, b 0 −.04, t(87) 0 −0.57, n.s. Instead, across subjects, paintings’ beauty ratings when categories were grouped with respect to geometry were very similar to and highly correlated with their beauty ratings when categories were grouped with respect to com- plexity, r 0 .94, t(18) 0 11.35, p < .001 (see Fig. 3). These results are inconsistent with the similarity-based view. The paintings that were processed fluently and perceived as typical changed when the grouping dimension changed, but the paintings that were rated as beautiful did not. Beauty contributes to typicality in the art museum condition The theory-based view predicts that beauty should increase typicality and, by extension, processing fluency for paint- ings assigned the art museum category label—a label asso- ciated with prior expectations of beauty. Thus, because category structure is not predicted to impact typicality and fluency, ratings were collapsed across grouping conditions. As was predicted, for typicality and processing fluency measures, beauty and category label significantly interacted such that the relationship between beauty and fluency was significantly greater for paintings labeled as museum pieces than it was for paintings labeled as student show paintings [typicality, bAM 0 .22 vs. bSS 0 −.01, t(87) 0 3.72, p 0 .002; reaction time, bAM 0 −.04 vs. bSS 0 .01, t(87) 0 −2.55, p 0 .02; probability correct, bAM 0 .22 vs. bSS 0 −.01, z 0 4.59, p < .001] (see Table 2 and Fig. 4). For art museum pieces, these relationships were significantly different from zero [typicality, t(87) 0 4.84, p < .001; reaction time, t(87) 0 2.55, p 0 .01; probability correct, z 0 4.83, p < .001]. However, for student show paintings, the effect of beauty was not significant [typicality, t(87) 0 −0.23, n.s.; reaction time, t(87) 0 0.59, n.s.; probability correct, z 0 −0.25, n.s.]. These results are consistent with a theory-based view: Beauty impacted category structure by contributing to how typical paintings were perceived to be and how fluently they were processed, but this increase was significant only for the art museum category, which has a strong prior relationship to the concept of beauty. Notably, when considered simultaneously, both beauty and distance-from-the-bound contributed significantly to fluency and typicality (see Table 2), suggesting that beauty and grouping contribute independently to the art museum category’s typicality structure. Thus, even though groupings did not impact painting beauty, both similarity- and theory- based factors may influence category typicality structure. Discussion Together, the results are inconsistent with the predictions of the similarity-based view and in accord with the theory- based view. Beauty does not arise from increases in typical- ity or fluency caused by category contrast. Instead, beauty contributes to the structure of categories for which subjects have strong prior expectations about beauty: Category mem- bers that are perceived as beautiful are viewed as more typical and are more fluently processed. Indeed, the fluency with which paintings were processed varied across different r = .94 t(18) = 11.35, p < .0001 1: Low Geometry/Low Complexity 2: Low Geometry/High Complexity 3: High Geometry/Low Complexity 4: High Geometry/High Complexity Fig. 3 Relationship between mean beauty ratings when category structure is determined by grouping paintings by shared geometry versus complexity. Inconsistent with the similarity- based view, judgments of beau- ty are unaffected by category structure Psychon Bull Rev (2013) 20:566–573 571 groupings in our experiment, but beauty did not. Instead, we observed a halo effect whereby art museum paintings that were considered beautiful were rated more typical and pro- cessed more fluently. The theory-based view suggests that the different impact of beauty on typicality between the two category labels reflects differences in subjects’ expectations. Art museums are expected to contain beautiful and valuable artworks, which causes beautiful paintings to be considered better, more typical examples of art museum pieces. Because student art shows are not as strongly associated with beautiful art, beauty did not contribute to this cate- gory’s typicality structure. One potential criticism of the present study is that we have left beauty itself unexplained, a je ne sais quoi that paintings either have or do not have. Because we do not offer an account of beauty’s origins, a similarity-minded researcher may sug- gest that perhaps beauty is determined by similarity to an abstract art concept collated over an individual’s lifespan, not the art museum and student art show categories that subjects learned here. Although we do not discount the role that previous experience may play in shaping perceptions of beauty, the mechanisms by which similarity to a long-term average would affect perceptions of beauty is not clear. From a similarity-based view, averages are thought to impact percep- tions of beauty via processing fluency. Our results demon- strate that fluency, in and of itself, is not what gave rise to perceptions of beauty in the present experiment, and so a similarity-based view that depended on similarity to a long- term average would need to offer a different mechanism. Indeed, an approach that relied on processing fluency as a cause of beauty would have a difficult time explaining why student art show paintings that were processed more fluently were not rated as more beautiful. To this end, our experiment may explain some additional observations in the beauty-in-averageness literature that are inconsistent with pure fluency-based accounts. While aver- ageness has been found to predict beauty in a number of real-world categories, there are cases beyond the present Table 2 Combined mixed effects models to predict measures of fluency from distance-from-the-bound, beauty, and category label Measure b df t p Typicality Intercept 4.12 87 25.78 <.001*** Distance 0.20 87 2.68 .02* Beauty −0.01 87 −0.23 .82 Beauty * category label 0.23 87 3.72 .002** Reaction time Intercept 1.65 87 22.65 <.001*** Distance −0.11 87 −4.34 <.001*** Beauty 0.01 87 0.59 .56 Beauty * category label −0.05 87 −2.55 .02* b z p Probability correct Intercept 1.08 9.54 <.001*** Distance 0.34 5.13 <.001*** Beauty −0.01 −0.25 .81 Beauty * category label 0.23 4.59 <.001*** Note. Table 2 shows the model coefficients for each of the terms. These slopes (b) imply an increase of b in the measure of fluency for each one unit increase in either distance or beauty. The intercept gives the mean rating for each measure of fluency. Category label is dummy coded such that 0 0 student art show and 1 0 art museum. Thus, the coefficient for beauty corresponds to the beauty slope in the student art show category, and the coefficient for the beauty * category label interaction indicates the change in this beauty slope for the art museum category. *p < .05 **p < .01 ***p < .001 Fig. 4 Typicality as a function of beauty. Consistent with the theory- based view, more beautiful paintings are rated as more typical for the art museum category, but not for the student art show category 572 Psychon Bull Rev (2013) 20:566–573 experiment where it does not. For example, typical spiders are not rated as the most attractive or beautiful (Halberstadt, 2006), although typical dogs, fish, and wristwatches are (Halberstadt & Rhodes, 2003). This difference may be explained by our theories about these categories. Our beliefs about spiders, as unpleasant and even dangerous, are more negative than our prior expectations about dogs and wrist- watches. Similarly, student art shows are expected to contain less beautiful art than art museums. These findings are in line with a theory-based view, which would predict a rela- tionship between beauty and typicality only in positive categories or those affiliated with beauty, even though they are inconsistent with pure fluency-based accounts. These examples also suggest that the two views need not be mutually exclusive. Depending on the domain and how rele- vant theories are to it, theory, similarity, or both effects could be manifested. Unlike patterns of dots or simple drawings of wristwatches, artworks are complex, beauty relevant, and as- sociated with different cultural practices and personal experi- ences. As a result, we may have strong theories about artworks that shape our perception of their beauty, whereas featural similarity may exert a greater impact on our perception of simpler stimuli’s beauty in the absence of strong theories. In summary, we explored one aspect of beauty’s nature: its relationship to individuals’ theories and perceptions of cate- gories. Our results suggest that beauty is not merely a reflec- tion of category structure, as is predicted by a similarity-based view. Instead, the relationship between beauty and category structure may be more complex than can be captured by similarity alone. In judgments of real-world stimuli, beauty itself can influence the structure of categories, in line with a theory-based explanation. Beauty remains mysterious; how- ever, we have made some progress here in understanding it. Author Note This work was supported by the National Institutes of Health (MH09152), the Air Force Office of Scientific Research (FA9550-10-1-0268), the Army Research Laboratory (W911NF-09-2- 0038), and the National Science Foundation (0927315). References Asch, S. E. (1946). Forming impressions of personality. Journal of Abnormal and Social Psychology, 41(3), 258–290. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for participants and items. Journal of Memory and Language, 59(4), 390–412. Barsalou, L. W. (1985). Ideals, central tendency, and frequency of instantiation as determinants of graded structure in categories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11(4), 629–654. Berggren, N., Henrik, J., & Poutvaara, P. (2010). The looks of a winner: Beauty and electoral success. Journal of Public Econom- ics, 94(1–2), 8–15. Danto, A. (1981). Transfiguration of the commonplace. Cambridge, MA: Harvard University Press. Davis, T., & Love, B. C. (2010). Memory for category information is idealized through contrast with competing options. Psychological Science, 21(2), 234–242. Dion, K., Berscheid, E., & Walster, E. (1972). What is beautiful is good. Journal of Personality and Social Psychology, 24(3), 285–290. Duerksen, G. L. (1972). Some effects of expectation on evaluation of recorded musical performance. Journal of Research in Music Education, 20(2), 268–272. Eagly, A. H., Ashmore, R. D., Makhijani, M. G., & Longo, L. C. (1991). What is beautiful is good, but…: A meta-analytic review on the physical attractiveness stereotype. Psychological Bulletin, 110(1), 109–128. Feingold, A. (1992). Good-looking people are not what we think. Psychological Bulletin, 111(2), 304–341. Halberstadt, J. (2006). The generality and ultimate origins of the attractiveness of prototypes. Personality and Social Psychology Review, 10(2), 166–183. Halberstadt, J., & Rhodes, G. (2003). It's not just average faces that are attractive: Computer-manipulated averageness makes birds, fish and automobiles attractive. Psychonomic Bulletin & Review, 10 (1), 149–156. Heit, E. (1997). Knowledge and concept learning. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts, and categories (pp. 7–41). Hove, East Sussex, UK: Psychology Press. Isham, E. A., Ekstrom, A. D., & Banks, W. P. (2010). Effects of youth authorship on the appraisal of paintings. Psychology of Aesthetics, Creativity, and the Arts, 4(4), 235–246. Kirk, U., Skov, M., Hulme, O., Christensen, M. S., & Zeki, S. (2009). Modulation of aesthetic value by semantic context: An fMRI study. NeuroImage, 44(3), 1125–1132. Langlois, J. H., Kalakanis, L., Rubenstein, A. J., Larson, A., Hallam, M., & Smoot, M. (2000). Maxims or myths of beauty? A meta-analytic and theoretical review. Psychological Bulletin, 126(3), 390–423. Lynch, E. B., Coley, J. D., & Medin, D. L. (2000). Tall is typical: Central tendency, ideal dimensions, and graded category structure among tree experts and novices. Memory & Cognition, 28(1), 41– 50. Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92(3), 289–316. Nosofsky, R. M. (1988). Exemplar-based accounts of relations be- tween classification, recognition, and typicality. Journal of Ex- perimental Psychology: Learning, Memory, and Cognition, 14(4), 700. Palmeri, T. J., & Blalock, C. (2000). The role of background knowledge in speeded perceptual categorization. Cognition, 77(2), B45–B57. Reber, R., Schwarz, N., & Winkielman, P. (2004). Processing fluency and aesthetic pleasure: Is beauty in the perceiver’s processing experience? Personality and Social Psychology Review, 8(4), 364–82. Rosch, E. H. (1975). Cognitive representations of semantic categories. Journal of Experimental Psychology. General, 104(3), 192–233. Storms, G., De Boeck, P., & Ruts, W. (2000). Prototype and Exemplar- Based Information in Natural Language Categories. Journal of Memory and Language, 42(1), 51–73. Thorndike, E. L. (1920). A constant error on psychological rating. Journal of Applied Psychology, 4(1), 25–29. Wilson, R. K., & Eckel, C. C. (2006). Judging a book by its cover: Beauty and expectations in the trust game. Political Research Quarterly, 59(2), 189–202. Winkielman, P., Halberstadt, J., Fazendeiro, T., & Catty, S. (2006). Prototypes are attractive because they are easy on the mind. Psychological Science, 17(9), 799–806. Wisniewski, E. J., & Medin, D. L. (1994). On the interaction of theory and data in concept learning. Cognitive Science, 18(2), 221–282. Zajonc, R. B. (1968). Attitudinal effects of mere exposure. Journal of Personality and Social Psychology, 9(2), 1–27. Psychon Bull Rev (2013) 20:566–573 573 Is better beautiful or is beautiful better? Exploring the relationship between beauty and category structure Abstract Method Subjects Materials Design and procedure Categorization task Rating tasks Results Relationships among the basic variables Similarity-based versus theory-based views of beauty Category structure affects processing fluency and perceptions of typicality, but not beauty Beauty contributes to typicality in the art museum condition Discussion References