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It is World Cup time, and people all over the planet have
their eyes on South Africa. For a major US event like the an-
nual Super Bowl, viewership is perhaps 100 million. That
number jumps by an order of magnitude when the World
Cup arrives every four years. Those who tune in will see not
only exciting soccer (called football in most countries) but
also fascinating physics in action.

Boundary layer and drag
Professional soccer goalies allow at most only a few goals in
a game. Free kicks and corner kicks, though, represent rela-
tively good scoring opportunities and so are particularly ex-
citing. Some fans may especially admire the power delivered
by the Netherlands’ Robin van Persie; others may marvel at
the curves imparted by England’s Steven Gerrard. Either way,
physics reveals why the ball moves the way it does.

As a soccer ball moves through air, it feels a force due to
pressure differences and to interactions between the viscous
air and the ball’s surface. The viscous forces are important in
the boundary layer, a concept introduced by Ludwig Prandtl
at the turn of the 20th century. In that region, near the surface
of the ball, the air speed relative to the ball’s surface rises from
zero at the surface to nearly its free-stream value (see the ar-
ticle by John D. Anderson Jr in PHYSICS TODAY, December
2005, page 42). The boundary layer is thinnest on the front of
the ball, which faces the oncoming air, and thicker farther

back. Eventually it separates from the ball altogether and
leaves a complex flow pattern with swirling eddies in its
wake. Much of the wonderment of soccer trajectories de-
pends on where the boundary layer separates.

Perhaps the most important parameter in fluid dynamics
is the Reynolds number, Re = VD/ν, with V the ball’s center-of-
mass speed relative to the air and D the ball’s diameter; the
kinematic viscosity ν is the ratio of air’s viscosity to its density
ρ. By applying Newton’s second law to a viscous fluid moving
around an object, one obtains the Navier–Stokes equation.
That equation can be put in dimensionless form if distance is
scaled by D and time is scaled by D/V; the result is an equation
with a single parameter, Re, which determines the fluid’s dy-
namics. Engineers use that result when they test with scale
models. They could, for example, study a ball with half the
diameter of a soccer ball in a wind tunnel that simulates the
ball moving at twice the normal speed. As long as the model
has the same geometry and surface as the standard ball, they
should observe the same fluid phenomena, because halving
the diameter while doubling the speed maintains the same Re.

The air’s pressure and viscous interactions with the ball
give rise to the drag force, which points opposite to the ball’s
velocity. The magnitude of the force is FD = (ρV 2/2)·A·CD, with
A the ball’s cross-sectional area and CD the dimensionless
drag coefficient, which depends on Re and the spin rate. I’ll
discuss spin in the next section; for now, consider a nonrotat-
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After a ball leaves a soccer player’s foot, surface roughness and 
asymmetric air forces contribute to some jaw-dropping trajectories.
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Figure 1. The drag crisis. In this plot of
drag coefficient (CD) as a function of
Reynolds number (Re), the rapid drop in CD,
the drag crisis, indicates the transition from
laminar to turbulent air flow. The crisis is
precipitated when the surface of the ball is
rough. For a soccer ball, Re/105 ≈ 
V/(7 m/s) ≈ V/(16 mph), where V is the
speed of the ball. In the two insets, illumi-
nated dust reveals the separation of the
boundary layer from a soccer ball moving
through air. The left image corresponds to a
Reynolds number of 1.1 × 105 and laminar
flow. For the right image, Re = 2.7 × 105 and
flow is turbulent; note that the boundary-
layer separation is farther back in that
image. The trajectory of a well-struck free
kick is always in the turbulent regime.



ing soccer ball moving through the air. Air flow around the
ball at low speeds is laminar (smooth rather than turbulent).
At high speeds, air flow is turbulent, and the boundary layer
separates farther back than for laminar flow; as a result, CD
is smaller for the turbulent separation.

Figure 1 shows CD as a function of Re for three sports
balls. Note the precipitous drop in CD, known as the drag cri-
sis, that indicates the transition from laminar to turbulent
flow. Surface roughness induces the transition to turbulence
at smaller Re. So, for example, a dimple-covered golf ball has
its drag crisis at smaller Re than a soccer ball, but the soccer
ball’s drag crisis is at a smaller Re than for a smooth ball such
as a racquetball; a golf ball without dimples could not travel
nearly as far as a normal golf ball. Some experimental data
show that beyond the drag crisis, CD rises slightly for soccer
balls and more steeply for rougher balls. A baseball has a CD
versus Re curve similar to that of a soccer ball for Re up to
about 2 × 105; not much data exist for baseballs beyond the
drag crisis.

For soccer balls, the drag crisis sets in when the speed is
about 12 m/s, comparable to that of a medium-range pass. A
van Persie free kick leaves his shoe with Re ≈ 5 × 105 and en-
ters the goal with Re ≈ 3 × 105; for the entire trajectory of the
ball, Re is above the crisis value. Initially, the drag force on
the ball is about 15% greater than the ball’s weight. For a
major-league fastball, Re ≈ 2 × 105 and the drag force is com-
parable to the weight of the ball. A golf ball launched at
70 m/s has Re ≈ 2 × 105 and experiences a drag force more
than twice its weight. The common introductory physics sim-
plification of ignoring air resistance is certainly not applica-
ble to the study of sports projectiles.

A banana kick with whipped air
For an effective free kick, a soccer player like Gerrard wants
to give the ball a large initial speed so that the goalie has little
time to react. He also wants to spin the ball so that it curves
past the goalie. Those are competing needs: The large trans-
lational speed requires a kick through the ball’s center, but a
large rotational speed necessitates an off-center kick. A good
Gerrard kick has an initial sidespin of some 600 rpm. By com-
parison, a major-league curveball spins at a rate of about 2000
rpm and a golf ball leaving the tee might have a backspin of
2500 rpm or more, in part thanks to the golf club’s grooved
and tilted face.

A rotating ball with angular velocity ω whips air behind
it. As the inset to figure 2 shows, an important feature of that

process is that the boundary layer sepa-
rates farther back on the side of the ball
that rotates in the direction opposite to
the center-of-mass velocity V. Because of
that asymmetry, the air exerts a force on
the ball—called the Magnus force in

honor of Heinrich Gustav Magnus—in the direction of ω × V.
A similar phenomenon occurs at sea, when a boat’s rudder
deflects water asymmetrically behind a boat executing a turn.
The Magnus force acts in addition to the drag force. Of
course, the air exerts only a single force on the ball; how that
force is split into components is up to the scientist.

Figure 2 shows a Gerrard-like free kick. The right-footed
Gerrard strikes the ball from a spot about 20 m from the goal.
A wall of defenders shifted toward Gerrard’s left hopes to be
“lucky” enough to be hit by the ball; the goalie guards Ger-
rard’s right half of the goal. Gerrard aims to put the ball in
the upper-left portion of the goal. An agile goalie can often
stop a ball kicked with no spin but will have a much tougher
time with Gerrard’s spinning ball, whose banana-shaped tra-
jectory not only curves as shown in the figure but actually
dips a bit. The initial magnitude of the Magnus force on a free
kick is comparable to the ball’s weight. Likewise, a golf ball
just driven from the tee experiences a Magnus force compa-
rable to its weight. For a curveball, the initial Magnus force
is relatively smaller, about a quarter of the baseball’s weight.

To study the aerodynamics of sports balls, researchers
use wind tunnels, sophisticated computational fluid dynam-
ics programs, and computation-based trajectory analysis. My
colleagues and I have studied the 32-panel soccer ball with
its well-known pentagons-and-hexagons pattern and the
Adidas Teamgeist ball, with its 14 thermally bonded panels,
that was used for the 2006 World Cup. Our tests failed to dis-
cern significant differences in CD over a wide range of Re, but
they do suggest that the Magnus force on the Teamgeist ball
is slightly larger than on the 32-panel ball. This year’s World
Cup is using the Adidas Jabulani ball, which has eight ther-
mally bonded panels and grooves on its surface. A great deal
of rich physics lies behind those spinning sports balls, whose
trajectories will cause elation in one country and anguish in
so many others.
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Figure 2. Gooooal! When a soccer player is awarded a
free kick, the defenders assemble in a wall, as indi -
cated by the green rectangle. This plot shows two
free-kick trajectories that clear the wall: the red curve,
which corresponds to a ball without spin, and the
tougher-to-intercept blue curve, representing a ball
with sidespin. All distances are in meters. The inset,
courtesy of Kenneth Wright, shows an overhead view
of the ball, which deflects the air to the right. Thus, in
accord with Newton’s third law, the air exerts a left-
pointing force on the ball. 


