The charmonium and beauty physics programme in ATLAS Maria Smizanska Lancaster University, UK The Charmonium and Beauty physics programme in ATLAS, M.Smizanska, BEACH 2010, Perugia - ATLAS J/ψ selection strategy for early beam conditions - Mass determination, method, results - Kinematic properties of J/ψ with early selections - First performance results with J/ψ - B-physics program - two examples of early measurements under preparation - two examples future high sensitivity B-measurements #### **ATLAS** EXPERIMENT ### Early J/ψ: event selections - p-p collision data at 7 TeV, taken between March 30th and May 17th 2010 - Integrated luminosity of data used for this study: 6.4 ± 1.3nb⁻¹ - Strategy: collect largest possible statistics; determine mass, resolution and J/ψ properties, understand backgrounds - Trigger requirements: - Minimum Bias Trigger Scintillators (MBTS) mounted at each end of the detector in front of the Liquid Argon Endcap-Calorimeter cryostats at z= ± 3.56m. The MBTS trigger - requires at least two hits from either sides of the detector. - L1 minimum bias trigger was not prescaled for runs with luminosity $< 10^{28}$ cm⁻² s⁻¹. - A dedicated muon software trigger commissioning chain at the Event Filter level initiated by the MBTS L1 trigger searches for muon track in the entire Muon Spectrometer - Analysing data in MBTS stream we requested at least one muon must pass the EF muon-commissioning chain with a muon of any pT reconstructed in the Muon System - To ensure collision events are selected, at least 3 tracks form a primary vertex. ## μμ and J/ψ selections #### Types of muons used: - Combined muon: - statistical combination of track parameters and the covariance matrices of Muon System(MS) track and Inner detector (ID) track; - the tracks with tight matching criteria selected to create a combined muon track traversing the ID and MS - Tagged muon: - muon segments matched to ID tracks extrapolated to MS. Reconstructed muon adopts parameters of ID track. - Pairs of muons with at least one Combined muon were retained #### Cosmic ray background: - may come from a pair formed by a cosmic muon and a muon from the collision. The probability is very small ($< 10^{-4}$) from the 900 GeV data analysis - A cosmic muon mimicking a J/ψ decaying back-to-back is excluded muons detected in the MS can only have momentum higher than 3 GeV. # μμ and J/ψ selections, cont - ID selections, Vertexing: - >= 1 hit in the pixels and 6 hits in silicon strip layers - pT > 0.5 GeV on each track - Tracks fitted to a common vertex using vertexing tools based on Kalman filter. - No constraints on mass or pointing to the primary vertex, and a very high vertex fit χ2 upper limit is applied (χ2 < 200). - Only ID track parameters of muons used for this J/psi study - Same sign pairs retained for cross-checking. - Cuts not optimized to reject backgrounds, since the aim of this study is to understand the shape of the low pT combinatorial background 5 # Early J/ψ signal in ATLAS | | | | | | • | |-----|------|--------------------|------------------|-----------|----------------------| | | | $m_{J/\psi}$, GeV | σ_m , MeV | N_{sia} | $\overline{N_{bck}}$ | | all | data | 3.095 ± 0.004 | 82 ± 7 | <i>J</i> | | | | MC | 3.098 ± 0.001 | 74 ± 0.4 | | | $$L = \prod_{i=1}^{N} \left[f_{signal}(m_{\mu\mu}^{i}) + f_{bkg}(m_{\mu\mu}^{i}) \right]$$ $$f_{signal}(m_{\mu\mu}, \delta m_{\mu\mu}) \equiv a_0 \frac{1}{\sqrt{2\pi} S \delta m_{\mu\mu}} e^{\frac{-(m_{\mu\mu} - m_{J/\psi})^2}{2(S \delta m_{\mu\mu})^2}}$$ $$f_{bkg}(m_{\mu\mu}) \equiv (1 - a_0)$$ - δm_{μμ} measured mass uncertainty of each pair of muon tracks - S scale factor to cover for unaccounted uncertainties on track parameters (e.g. non-gaussian tails) - The measured mass agrees with PDG within statistical precision of first data - mass resolution agrees with that expected from MC # Properties of early J/ψ in ATLAS - Data agree with MC predictions of resolution and PDG mass - Also good agreement between data and MC on kinematic properties of J/psi - Essential conclusions derived from these first J/ψ signal studies. # Properties of muons from early J/ψ - Our early analysis can access very low $pT J/\psi$ producing soft pT muons, see left top - Muons with enough energy to cross the calorimeters reach the MS mainly in the forward region - This is a consequence of the muon acceptance of the ATLAS detector without any threshold requirement on the muon trigger, see the muon efficiency (left bottom, black) determined from MC # Performance of early J/ψ in ATLAS - J/ψ mass resolution varies with the pseudorapidity of muons accordingly to MC expectations - endcap $2.5 > |\eta| > 1.05$, barrel $|\eta| < 1.05$ - no statistically significant mass shifts from the PDG value observed in any of the pseudorapidity regions | | | $m_{J/\psi}$, GeV | σ_m , MeV | N_{sig} | N_{bck} | |-----|----------|--------------------|------------------|--------------|--------------| | all | data | 3.095 ± 0.004 | 82 ± 7 | 612 ± 34 | 332 ± 9 | | | MC | 3.098 ± 0.001 | 74 ± 0.4 | | | | | data n/v | 3.096 ± 0.004 | 82 ± 7 | 612 ± 34 | 351 ± 10 | | BB | data | 3.097 ± 0.005 | 36 ± 6 | 69 ± 9 | 8 ± 1 | | | MC | 3.098 ± 0.001 | 37 ± 0.7 | | | | | data n/v | 3.099 ± 0.005 | 38 ± 7 | 69 ± 9 | 8 ± 1 | | EB | data | 3.089 ± 0.008 | 66 ± 12 | 88 ± 11 | 34 ± 3 | | | MC | 3.097 ± 0.001 | 53 ± 0.8 | | | | | data n/v | 3.089 ± 0.009 | 66 ± 12 | 87 ± 11 | 36 ± 3 | | EE | data | 3.095 ± 0.006 | 88 ± 9 | 437 ± 31 | 324 ± 10 | | | MC | 3.098 ± 0.001 | 82 ± 0.5 | | | | | data n/v | 3.096 ± 0.006 | 88 ± 9 | 437 ± 31 | 344 ± 10 | | | | | | | | ### Comparison with like sign pairs Early di-muon pairs selected at lowest pT have specific features visible when comparing like sign pairs with J/ψ candidates - like sign pairs almost match the level of the J/ψ background (unlike pairs) in the side bands - source of both dominated by muons from K/pi decays - very little b/c content in tails Di-muon pairs of opposite sign in the J/ψ region have evidently different kinematic properties from the like sign pairs ## **ATLAS B-physics program** - ATLAS B-physics program is realised in following sub-projects - HF quarkonia measurements - $B \rightarrow J/ψ$ (inclusive, exclusive) channels - Rare B-decays B_{sd} → μμ, b → s μμ, b → d μμ - Production properties of B and D-mesons decaying into hadrons - Each sub-project has tasks/measurements for early, medium and advanced periods - First measurements, in addition to physics results, serve to improveunderstanding of detector performance to allow later high precision measurements - Selected examples of MC based studies are given further for the early and for advanced periods - Complete B-physics program arXiv:0901.0512; CERN-OPEN-2008-020, Chapter 11. | Parameter | Simulated value | Fit result with statitical error | | | |-------------------------------|-----------------|----------------------------------|--|--| | Γ , ps ⁻¹ | 0.651 | 0.73 ± 0.07 | | | | m(B), GeV | 5.279 | 5.284 ± 0.006 | | | | | | | | | | Γ_s , ps ⁻¹ | 0.683 | 0.743 ± 0.051 | | | | m(B), GeV | 5.343 | 5.359 ± 0.006 | | | | | 1 | | | | Applying simultaneous mass - lifetime likelihood fit to events - B \rightarrow J/ ψ K^{0*} (10 pb⁻¹) - $B_s \rightarrow J/\psi \phi \quad (150 \text{ pb}^{-1})$ Lifetimes measured with sensitivity better than 10%. Early lifetime measurements test the calibrations and alignments necessary for precise CPV studies # Differential cross section B⁺ →J/ψ K The B⁺ \rightarrow J/ ψ K⁺ total and differential production cross-sections - With 10 pb⁻¹ the total crosssection can be measured with a statistical precision better than 5% - The differential cross-section with precision of the order of 10%. Fit of the *B*+ mass in four *pT* ranges | | 34 | p_T | GeV | |--|----|-------|-----| | | | | | | p_T range [GeV] | $p_T \in [10, 18]$ | $p_T \in [18, 26]$ | $p_T \in [26, 34]$ | $p_T \in [34, 42]$ | $p_T \in [10, \inf)$ | |----------------------------|--------------------|--------------------|--------------------|--------------------|----------------------| | stat. $+ \mathscr{A} [\%]$ | 7.7 | 6.9 | 10.5 | 13.9 | 4.3 | | total [%] | 16.1 | 15.8 | 17.6 | 19.8 | 14.8 | # Production polarization of Λ_b with 5 th Polarization varies with pseudorapidity thus ATLAS/CMS and LHCb can perform complementary measurements to map full range. With 5 fb⁻¹ the Λ_b polarization in ATLAS can be measured with precision of 0.07 | | <u> </u> | |--------------------|-----------------------| | Parameter | Value ± Uncertainty | | | (Polarization = -25%) | | Polarization | -0.213 ± 0.069 | | $ a_{+} $ | 0.461 ± 0.051 | | a | 0.289 ± 0.058 | | $ b_{+} $ | 0.259 ± 0.071 | | $\alpha_+ - \beta$ | -0.991 ± 0.640 | | $\alpha \beta$ | 0.856 ± 0.364 | | $\beta_+ - \beta$ | -1.442 ± 0.666 | | | • | $B_s \rightarrow \mu\mu$ signal and backgrounds after applying all selection cuts - relevant at > 10^{33} cm $^{-2}$ s $^{-1}$ | Selection cut | $B_s^0 \rightarrow \mu^+ \mu^-$ efficiency | $b\bar{b} \rightarrow \mu^+\mu^- X$ efficiency | | |------------------------------|--|--|-------------------------------| | $I_{\mu\mu} > 0.9$ | 0.24 | $(2.6 \pm 0.3) \cdot 10^{-2}$ | | | $L_{xy} > 0.5$ mm | 0.26 | $(1.4 \pm 0.1) \cdot 10^{-2}$ | $(1.0 \pm 0.7) \cdot 10^{-3}$ | | $\alpha < 0.017 \text{ rad}$ | 0.23 | $(8.5 \pm 0.2) \cdot 10^{-3}$ | (1.0 ± 0.7) · 10 | | Mass in $[-\sigma, 2\sigma]$ | 0.76 | 0.0 | 079 | | TOTAL | 0.04 | $0.24 \cdot 10^{-6}$ | $(2.0 \pm 1.4) \cdot 10^{-6}$ | | Events yield | 5.7 | | 14^{+13}_{-10} | | | | | | - The ATLAS performance was analysed for first J/ψ→μμ Shown that di-muon performance with real data consistent with MC predictions - The MC simulation of B_s → μμ potential (left) to test potential with 10 fb⁻¹ was done with trigger menus for > 10³³ - both muons required pT> 6 GeV. - Low pT B-physics di-muon triggers will be applied at low instantaneous luminosities of early LHC period to maximize reach for first sensitivity - At ~ 10³⁴ dedicated triggers prepared to use full ATLAS potential for B_s → μμ - B_s →μμ B_d →μμ in physics program for ATLAS upgrade # Summary - Early J/ψ data taken with minimum bias trigger show excellent agreement with expected performance - Reproducing J/ψ PDG mass in all pseudorapidity regions confirms that pT scale understood at low pT range - **J/** ψ mass resolution over entire pseudorapidity regions of detector consistent with MC. - B-physics program prepared for both early and advanced periods. - ATLAS will significantly contribute to B $\rightarrow \mu\mu$ potential as an instantaneous LHC luminosity will be increased to several times 10^{33} and to a nominal value 10^{34} Rare B decays for detector upgrade being prepared. 16