




# The charmonium and beauty physics programme in ATLAS

Maria Smizanska Lancaster University, UK

The Charmonium and Beauty physics programme in ATLAS, M.Smizanska, BEACH 2010, Perugia





- ATLAS J/ψ selection strategy for early beam conditions
- Mass determination, method, results
- Kinematic properties of J/ψ with early selections
- First performance results with J/ψ
- B-physics program
  - two examples of early measurements under preparation
  - two examples future high sensitivity B-measurements

#### **ATLAS** EXPERIMENT

### Early J/ψ: event selections

- p-p collision data at 7 TeV, taken between March 30th and May 17th 2010
- Integrated luminosity of data used for this study: 6.4 ± 1.3nb<sup>-1</sup>
- Strategy:

collect largest possible statistics; determine mass, resolution and J/ψ properties, understand backgrounds

- Trigger requirements:
  - Minimum Bias Trigger Scintillators (MBTS) mounted at each end of the detector in front of the Liquid Argon Endcap-Calorimeter cryostats at z= ± 3.56m. The MBTS trigger - requires at least two hits from either sides of the detector.
  - L1 minimum bias trigger was not prescaled for runs with luminosity  $< 10^{28}$  cm<sup>-2</sup> s<sup>-1</sup>.
  - A dedicated muon software trigger commissioning chain at the Event Filter level initiated by the MBTS L1 trigger searches for muon track in the entire Muon Spectrometer
    - Analysing data in MBTS stream we requested at least one muon must pass the EF muon-commissioning chain with a muon of any pT reconstructed in the Muon System
- To ensure collision events are selected, at least 3 tracks form a primary vertex.



## μμ and J/ψ selections

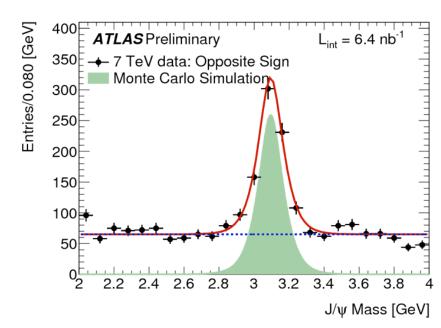
#### Types of muons used:

- Combined muon:
  - statistical combination of track parameters and the covariance matrices of Muon System(MS) track and Inner detector (ID) track;
  - the tracks with tight matching criteria selected to create a combined muon track traversing the ID and MS
- Tagged muon:
  - muon segments matched to ID tracks extrapolated to MS. Reconstructed muon adopts parameters of ID track.
- Pairs of muons with at least one Combined muon were retained

#### Cosmic ray background:

- may come from a pair formed by a cosmic muon and a muon from the collision. The probability is very small ( $< 10^{-4}$ ) from the 900 GeV data analysis
- A cosmic muon mimicking a J/ψ decaying back-to-back is excluded muons detected in the MS can only have momentum higher than 3 GeV.




# μμ and J/ψ selections, cont

- ID selections, Vertexing:
  - >= 1 hit in the pixels and 6 hits in silicon strip layers
  - pT > 0.5 GeV on each track
  - Tracks fitted to a common vertex using vertexing tools based on Kalman filter.
  - No constraints on mass or pointing to the primary vertex, and a very high vertex fit χ2 upper limit is applied (χ2 < 200).</li>
- Only ID track parameters of muons used for this J/psi study
- Same sign pairs retained for cross-checking.
- Cuts not optimized to reject backgrounds, since the aim of this study is to understand the shape of the low pT combinatorial background

5



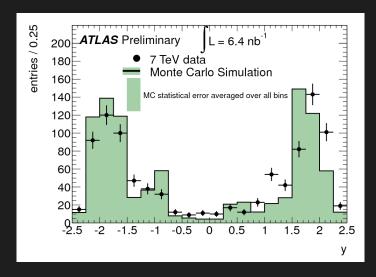
# Early J/ψ signal in ATLAS

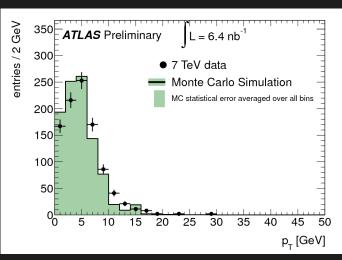


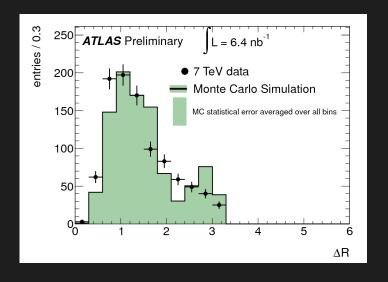
|     |      |                    |                  |           | •                    |
|-----|------|--------------------|------------------|-----------|----------------------|
|     |      | $m_{J/\psi}$ , GeV | $\sigma_m$ , MeV | $N_{sia}$ | $\overline{N_{bck}}$ |
| all | data | $3.095 \pm 0.004$  | $82 \pm 7$       | <i>J</i>  |                      |
|     | MC   | $3.098 \pm 0.001$  | $74 \pm 0.4$     |           |                      |

$$L = \prod_{i=1}^{N} \left[ f_{signal}(m_{\mu\mu}^{i}) + f_{bkg}(m_{\mu\mu}^{i}) \right]$$

$$f_{signal}(m_{\mu\mu}, \delta m_{\mu\mu}) \equiv a_0 \frac{1}{\sqrt{2\pi} S \delta m_{\mu\mu}} e^{\frac{-(m_{\mu\mu} - m_{J/\psi})^2}{2(S \delta m_{\mu\mu})^2}}$$

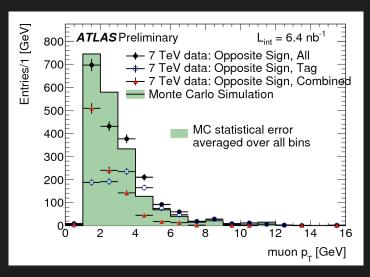

$$f_{bkg}(m_{\mu\mu}) \equiv (1 - a_0)$$

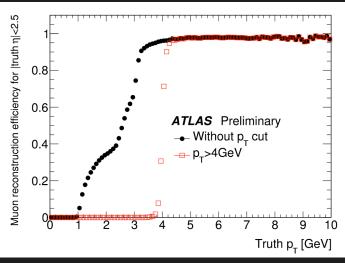

- δm<sub>μμ</sub> measured mass uncertainty of each pair of muon tracks
- S scale factor to cover for unaccounted uncertainties on track parameters (e.g. non-gaussian tails)

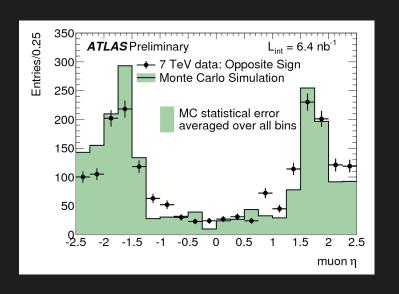

- The measured mass agrees with PDG within statistical precision of first data
- mass resolution agrees with that expected from MC



# Properties of early J/ψ in ATLAS



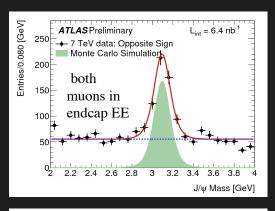



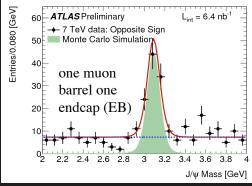



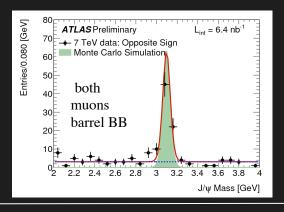

- Data agree with MC predictions of resolution and PDG mass
- Also good agreement between data and MC on kinematic properties of J/psi
  - Essential conclusions derived from these first  $J/\psi$  signal studies.

# Properties of muons from early J/ψ





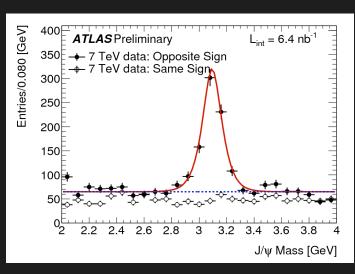


- Our early analysis can access very low  $pT J/\psi$  producing soft pT muons, see left top
- Muons with enough energy to cross the calorimeters reach the MS mainly in the forward region
- This is a consequence of the muon acceptance of the ATLAS detector without any threshold requirement on the muon trigger, see the muon efficiency (left bottom, black) determined from MC



# Performance of early J/ψ in ATLAS



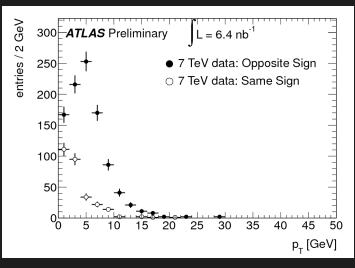


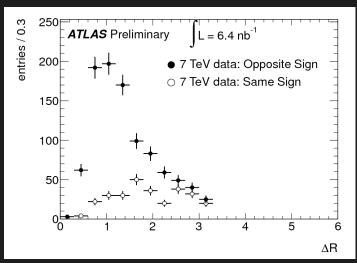



- $J/\psi$  mass resolution varies with the pseudorapidity of muons accordingly to MC expectations
  - endcap  $2.5 > |\eta| > 1.05$ , barrel  $|\eta| < 1.05$
- no statistically significant mass shifts from the PDG value observed in any of the pseudorapidity regions

|     |          | $m_{J/\psi}$ , GeV | $\sigma_m$ , MeV | $N_{sig}$    | $N_{bck}$    |
|-----|----------|--------------------|------------------|--------------|--------------|
| all | data     | $3.095 \pm 0.004$  | $82 \pm 7$       | $612 \pm 34$ | $332 \pm 9$  |
|     | MC       | $3.098 \pm 0.001$  | $74 \pm 0.4$     |              |              |
|     | data n/v | $3.096 \pm 0.004$  | $82 \pm 7$       | $612 \pm 34$ | $351 \pm 10$ |
| BB  | data     | $3.097 \pm 0.005$  | $36 \pm 6$       | $69 \pm 9$   | $8 \pm 1$    |
|     | MC       | $3.098 \pm 0.001$  | $37 \pm 0.7$     |              |              |
|     | data n/v | $3.099 \pm 0.005$  | $38 \pm 7$       | $69 \pm 9$   | $8 \pm 1$    |
| EB  | data     | $3.089 \pm 0.008$  | $66 \pm 12$      | $88 \pm 11$  | $34 \pm 3$   |
|     | MC       | $3.097 \pm 0.001$  | $53 \pm 0.8$     |              |              |
|     | data n/v | $3.089 \pm 0.009$  | $66 \pm 12$      | $87 \pm 11$  | $36 \pm 3$   |
| EE  | data     | $3.095 \pm 0.006$  | $88 \pm 9$       | $437 \pm 31$ | $324 \pm 10$ |
|     | MC       | $3.098 \pm 0.001$  | $82 \pm 0.5$     |              |              |
|     | data n/v | $3.096 \pm 0.006$  | $88 \pm 9$       | $437 \pm 31$ | $344 \pm 10$ |
|     |          |                    |                  |              |              |




### Comparison with like sign pairs



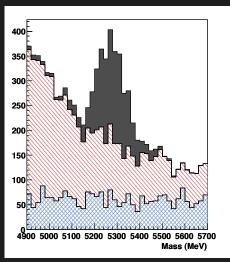

Early di-muon pairs selected at lowest pT have specific features visible when comparing like sign pairs with  $J/\psi$  candidates

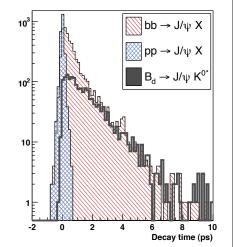
- like sign pairs almost match the level of the J/ψ background (unlike pairs) in the side bands
  - source of both dominated by muons from K/pi decays
  - very little b/c content in tails

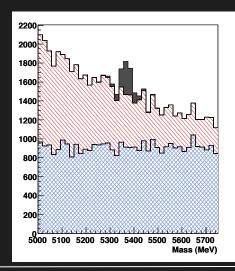
Di-muon pairs of opposite sign in the  $J/\psi$  region have evidently different kinematic properties from the like sign pairs

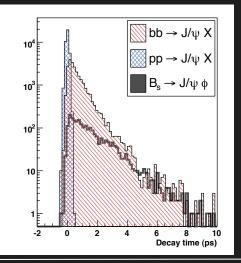





## **ATLAS B-physics program**





- ATLAS B-physics program is realised in following sub-projects
  - HF quarkonia measurements
  - $B \rightarrow J/ψ$  (inclusive, exclusive) channels
  - Rare B-decays B<sub>sd</sub> → μμ, b → s μμ, b → d μμ
  - Production properties of B and D-mesons decaying into hadrons
- Each sub-project has tasks/measurements for early, medium and advanced periods
  - First measurements, in addition to physics results, serve to improveunderstanding of detector performance to allow later high precision measurements
- Selected examples of MC based studies are given further for the early and for advanced periods
  - Complete B-physics program arXiv:0901.0512; CERN-OPEN-2008-020, Chapter 11.





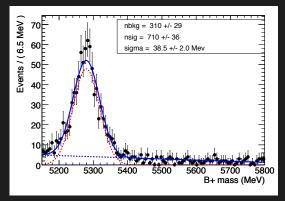


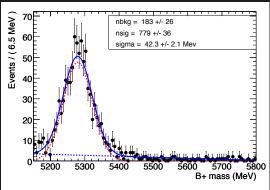


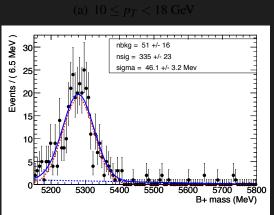


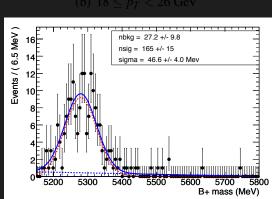



| Parameter                     | Simulated value | Fit result with statitical error |  |  |
|-------------------------------|-----------------|----------------------------------|--|--|
| $\Gamma$ , ps <sup>-1</sup>   | 0.651           | $0.73 \pm 0.07$                  |  |  |
| m(B), GeV                     | 5.279           | $5.284 \pm 0.006$                |  |  |
|                               |                 |                                  |  |  |
| $\Gamma_s$ , ps <sup>-1</sup> | 0.683           | $0.743 \pm 0.051$                |  |  |
| m(B), GeV                     | 5.343           | $5.359 \pm 0.006$                |  |  |
|                               | 1               |                                  |  |  |


Applying simultaneous mass - lifetime likelihood fit to events


- B  $\rightarrow$  J/ $\psi$  K<sup>0\*</sup> (10 pb<sup>-1</sup>)
- $B_s \rightarrow J/\psi \phi \quad (150 \text{ pb}^{-1})$


Lifetimes measured with sensitivity better than 10%. Early lifetime measurements test the calibrations and alignments necessary for precise CPV studies


# Differential cross section B⁺ →J/ψ K





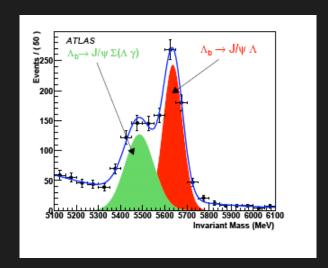


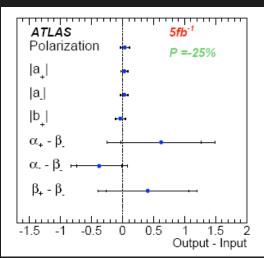




The B<sup>+</sup>  $\rightarrow$  J/ $\psi$ K<sup>+</sup> total and differential production cross-sections

- With 10 pb<sup>-1</sup> the total crosssection can be measured with a statistical precision better than 5%
- The differential cross-section with precision of the order of 10%.


Fit of the *B*+ mass in four *pT* ranges


|  | 34 | $p_T$ | GeV |
|--|----|-------|-----|
|  |    |       |     |

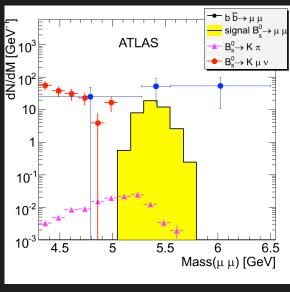
| $p_T$ range [GeV]          | $p_T \in [10, 18]$ | $p_T \in [18, 26]$ | $p_T \in [26, 34]$ | $p_T \in [34, 42]$ | $p_T \in [10, \inf)$ |
|----------------------------|--------------------|--------------------|--------------------|--------------------|----------------------|
| stat. $+ \mathscr{A} [\%]$ | 7.7                | 6.9                | 10.5               | 13.9               | 4.3                  |
| total [%]                  | 16.1               | 15.8               | 17.6               | 19.8               | 14.8                 |

# Production polarization of $\Lambda_b$ with 5 th








Polarization varies with pseudorapidity thus ATLAS/CMS and LHCb can perform complementary measurements to map full range.

With 5 fb<sup>-1</sup> the  $\Lambda_b$  polarization in ATLAS can be measured with precision of 0.07

|                    | <u> </u>              |
|--------------------|-----------------------|
| Parameter          | Value ± Uncertainty   |
|                    | (Polarization = -25%) |
| Polarization       | $-0.213 \pm 0.069$    |
| $ a_{+} $          | $0.461 \pm 0.051$     |
| a                  | $0.289 \pm 0.058$     |
| $ b_{+} $          | $0.259 \pm 0.071$     |
| $\alpha_+ - \beta$ | $-0.991 \pm 0.640$    |
| $\alpha \beta$     | $0.856 \pm 0.364$     |
| $\beta_+ - \beta$  | $-1.442 \pm 0.666$    |
|                    | •                     |







 $B_s \rightarrow \mu\mu$  signal and backgrounds after applying all selection cuts - relevant at >  $10^{33}$  cm  $^{-2}$  s  $^{-1}$ 

| Selection cut                | $B_s^0 \rightarrow \mu^+ \mu^-$ efficiency | $b\bar{b} \rightarrow \mu^+\mu^- X$ efficiency |                               |
|------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------|
| $I_{\mu\mu} > 0.9$           | 0.24                                       | $(2.6 \pm 0.3) \cdot 10^{-2}$                  |                               |
| $L_{xy} > 0.5$ mm            | 0.26                                       | $(1.4 \pm 0.1) \cdot 10^{-2}$                  | $(1.0 \pm 0.7) \cdot 10^{-3}$ |
| $\alpha < 0.017 \text{ rad}$ | 0.23                                       | $(8.5 \pm 0.2) \cdot 10^{-3}$                  | (1.0 ± 0.7) · 10              |
| Mass in $[-\sigma, 2\sigma]$ | 0.76                                       | 0.0                                            | 079                           |
| TOTAL                        | 0.04                                       | $0.24 \cdot 10^{-6}$                           | $(2.0 \pm 1.4) \cdot 10^{-6}$ |
| Events yield                 | 5.7                                        |                                                | $14^{+13}_{-10}$              |
|                              |                                            |                                                |                               |

- The ATLAS performance was analysed for first J/ψ→μμ Shown that di-muon performance with real data consistent with MC predictions
- The MC simulation of B<sub>s</sub> → μμ potential (left) to test potential with 10 fb<sup>-1</sup> was done with trigger menus for > 10<sup>33</sup>
  - both muons required pT> 6 GeV.
- Low pT B-physics di-muon triggers will be applied at low instantaneous luminosities of early LHC period to maximize reach for first sensitivity
- At ~ 10<sup>34</sup> dedicated triggers prepared to use full ATLAS potential for B<sub>s</sub> → μμ
- B<sub>s</sub> →μμ B<sub>d</sub> →μμ in physics program for ATLAS upgrade



# Summary

- Early J/ψ data taken with minimum bias trigger show excellent agreement with expected performance
- Reproducing J/ψ PDG mass in all pseudorapidity regions
   confirms that pT scale understood at low pT range
- **J/** $\psi$  mass resolution over entire pseudorapidity regions of detector consistent with MC.
- B-physics program prepared for both early and advanced periods.
- ATLAS will significantly contribute to B  $\rightarrow \mu\mu$  potential as an instantaneous LHC luminosity will be increased to several times  $10^{33}$  and to a nominal value  $10^{34}$  Rare B decays for detector upgrade being prepared.

16