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Abstract

The 1-shot α-beauty contest is a strategic game under bounded rationality conditions,

where equilibrium is approached if the game is played iteratively sufficiently many times.

Experimental data of the 1-shot setting show a common pattern: The spectrum of announced

numbers is a superposition of a skew background distribution and a regime of extra ordinarily

often chosen numbers. Our model is capable of quantitatively reproducing this observation

as well as the convergence towards equilibrium in the iterative setting. The approach is

based on two basic assumptions: 1.) Players iteratively update their recent guesses in the

sense of eductive reasoning and 2.) Players estimate intervals rather than exact numbers to

cope with incomplete knowledge in non-equilibrium. The width of the interval is regarded

as a measure for the confidence of the players’ respective guess. It is shown analytically that

the sequence of guessed numbers approaches a (finite) limit within only very few iterations.

Moreover, if all players have infinite confidence in their respective guesses, the asymptotic

Winning Number equals the rational Nash equilibrium 0, while if players have only finite

confidence in their recent guess, the Winning Number in the 1-shot setting is strictly larger

than 0. Our model is also capable of quantitatively describing the “path into equilibrium”.

Convergence is shown to be polynomial in the number of rounds played. The predictions of

our model are in good quantitative agreement with real data for various α-beauty contest

games.
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1 Introduction and Overview of Results

Ever since Keynes (1936) the α-beauty contest has served as an example for a strategic
game under bounded rationality conditions to cover elementary features of price forma-
tion. The α-beauty contest game is described by Nagel, Bosch-Domènech, Satorra, and
Garca-Montalvo (2002) as follows. “A certain number of players each chooses simultane-
ously a decimal number, let us say, from the interval [0, 100]. The winner is the person
whose number is closest to α times the mean of all chosen numbers, where α < 1 is a
predetermined and known number. The winner gains a fixed prize. If there is a tie, the
prize is split amongst those who tie or a random draw decides the winner.”
Being in an equilibrium would imply that each player’s belief is consistent with what all
the other players actually plan to choose. In fact, as Nagel (1995) clearly demonstrated,
the game theoretic Nash equilibrium 0 is generally not observed in the 1-shot “α-beauty
contest”, rather than is approached after sufficiently many rounds in the iterative setting,
i.e. in the presence of communication.

Field experiments were conducted to estimate the behavior of probands when playing
the Guessing Game in different settings (Nagel 1995, Nagel and Duffy 1997). The number
of probands in controlled laboratory experiments is naturally constrained to an order of
magnitude of 10 only. Hence corresponding outcomes are strongly influenced by individual
behavior and may not cope for typical properties generated by the game. Since we are
interested in such typical properties, we first refer to studies with a much larger set of
players such as the newspaper experiments conducted by Nagel, Selten, and Thaler. For
an overview, see Nagel, Bosch-Domènech, Satorra, and Garca-Montalvo (2002), where also
a survey of 24 experiments on the 1-shot Guessing Games can be found. Figures 1 and 2
are two samples obtained from an experiment done by the German newspaper “Die Zeit”
in 2002 and the Spanish newspaper Expansion, respectively (Nagel, Bosch-Domènech,
Satorra, and Garca-Montalvo 2002).

Figure 1: The 1-shot Guessing Game played by approximately 3000 probands. Data are
from the experiment done by the German newspaper “Die Zeit” in 2002.
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Figure 2: The 1-shot Guessing Game played by the Spanish newspaper Espansion. Data
are taken from Nagel, Bosch-Domènech, Satorra, and Garca-Montalvo (2002).

Game Theory predicts that if all players had identical beliefs and were perfectly ratio-
nal, and if each player knows that all others were also perfectly rational, then 0 would be
the unique (stable) solution, in the sense of a game theoretic Nash equilibrium. Hence,
under these conditions, it wold be rational to choose 0 as the number to be announced.
As experiments show, most players do not behave according to this. In fact, if only one
player assumes that at least one player is irrational, then it is rational not to choose 0 as
the proposed Winning Number.

The rational regime in Figure 1, α = 2/3, ǫ = 0
k 0 1 2 3 4 5 6 7 8..∞
χk 33 22 14 9 6 4 2 1 0

Table 1: The rational regime calculated according to our model, see next section.

There are three main observations drawn from experimental data: The first observation
is that the Winning Number observed is approximately equal in different (comparable) ex-
periments. The second observation is that the spectrum of numbers announced is a super-
position of a broad and highly skewed distribution and a collection of numbers {χ1, χ2, ..},
which are extraordinarilly often chosen. We call the set of these numbers the “rational
regime” (see Table 1). While the skew distribution reflects the players’ uncertainty about
other players’ rationality, the rational regime represents different depth of thinking of play-
ers. The third observation is that equilibrium is established after a sufficient number of
iterative rounds (see Figure 3). A reasonable model has to consistently explain these facts.

We start by considering the 1-shot game setting. The strategy chosen by one individual
crucially depends on her guess about strategies of the others, e.g. on the distribution of
strategies played at that time by others. Because of the lack of mutual consistency away
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from equilibrium, individual beliefs might differ from each others actual plans and are
strongly based upon their individual recent hypothesis. Hence it is natural to assume that
all players have minimal prejudice about other players guesses. In this situation, strategies
and thus guesses are expected to be heterogenous over the players’ population and context
dependent. Authors including Nagel (1995), Stahl and Wilson (1995), Ho, Camerer, and
Weigelt (1998), Costa-Gomes, Crawford, and Broseta (2001) proposed the idea that all
k-step players think that all others are k − 1 step players. This assumption was weakened
by Camerer and coworkers (see for a review Camerer 2003), claiming that all k-step players
have an accurate guess about the relative proportion of players who are thinking k′ < k
levels. Camerer proposed that this distribution is Poisson with intensity τ . This assump-
tion also allows for taking into account that there are other players performing at most the
same levels of thinking (Camerer, Ho, and Chong 2003). It was found that τ varies between
0.1 and about 3.6 in 0-equilibrium games, while most of players perform 1.6 thinking steps.

In most approaches numbers, let them be integers or reals, are considered as the fun-
damental entities for individual choice of strategies. It is well-known that the result of
a calculation essentially depends on the choice of the set of elements, the corresponding
operation is defined on. Of course it is not canonical that numbers have to be chosen for
computation. Other entities might be considered. Intervals rather than numbers might be
chosen to scope with the uncertain knowledge about others away from equilibrium. This
fact invokes the key hypothesis of our model:

“Strategy choices rely on estimates on INTERVALS rather than NUMBERS!”

A strategy thus is to choose an interval within the range of an admissible number ac-
cording to which then the guess is calculated in the sense of a best reply. As an example:
If a player guesses that the Winning Number is about 23, then the interval chosen might
be [7, 42]. Without any further knowledge, the assumption is that each agent has minimal
prejudice in that all numbers in this interval are regarded equally probable, while also all
admissible intervals are equally likely. This assumption represents the rational guess of a
player that all others are bounded rational or even irrational (Plot 1993).

We will propose an elementary model for the 1-shot setting of the Guessing Game
which is played by a large number of subjects performing k levels of thinking (for details
see Section 2). Thereby we allow for infinite many levels of thinking, because a limit
concerning depth of thinking is neither known nor a priori given. Fundamental assumptions
are :

(i) Each individual estimates intervals rather than numbers!
This assumption is actually an assumption about the choice of strategies, see above;
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(ii) Each individual successively updates his guessed number according to his recent be-
lieve and hence generates an infinite sequence of guessed numbers during k iterations!
This is actually to assume the mechanism of eductive reasoning.

Our model has explicit parameters M , N and α, where M is the number of players, N
characterizes the set of alternatives and α is often is chosen to be 1/2 or 2/3, as well as
an implicit one ǫ. This parameter ǫ can be regarded as a measure for the confidence of an
agent in her recent guess in the sense that the larger ǫ is, the less confident is the player.
As we will discuss in the next Section, the parameter ǫ is introduced to explain the skew
distribution of guessed numbers observed in the experimental results. It is shown under
very weak assumptions, i.e. 0 ≤ α and 0 ≤ ǫ ≤ 1 that the expected (asymptotic) Winning
Number y∗ in the 1-shot game yields

y∗ =
N

2

ǫβ

2 − β (2 − ǫ)
, 0 ≤ α, ǫ ≤ 1

where β = α M−1
M−α

is approximatively equals to α for M , the number of players, large
enough. The asymptotic expected winning number y⋆ is therefore unequal to 0 unless
α = 0 or ǫ = 0, while y∗ = N/2 if α = 1 and ǫ = 0.

It is shown that the sequence of guessed numbers converges to a stationary value, see
Proposition 1. This result was first obtained by Reimann (2004) for a discrete set of alter-
native and unlimited many players. It is shown that the asymptotically expected guessing
number is strictly larger than 0 if and only if intervals have positive width. The individual
width can be regarded as a measure for the confidence a player has in her guess, i.e. the
smaller the interval width the more confident is the player that her guess is correct. Hence,
if individuals have a finite degree of confidence in their individual belief, i.e. the intervals
chosen have non-zero width, the system reaches a stationary state which is not the game-
theoretic equilibrium. The Nash equilibrium is obtained in a 1-shot setting if and only if
the width of the confidence interval is 0. In other words the Nash equilibrium would be
played if and only if all players would assume that all other players are also rational. The
convergence is rapid, i.e. within only 4 thinking steps the guessed number (approximately)
equals the corresponding stationary value for usual choices of the parameter α and ǫ. This
property of rapid convergence allows us to consider the iterative game setting using the
model proposed for the 1-shot setting. We further deduce the distribution of numbers
announced in an ensembles of players with heterogenous believes.

A reasonable model of the α-Beauty Contest must also explain the path towards equi-
librium. In the second part of the paper we extend the previous model of the 1-shot game
setting towards an iterative setting with t rounds. In the iterative setting, the game is
played for several rounds - with the same rules - , while between rounds the Winning
Number of the respective last round is made public, i.e. before playing the next round
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Figure 3: The iterated Guessing Game: Experimental data (red circles) show a log-linear
relationship (blue line) between the Winning Numbers announced after each round and
the number of rounds. The data are from an experiment conducted at the University of
Bergen, Norway, 2003.

all players are informed about the resulting Winning Number of the previous round. If
agents would be completely rational, communication would not have any impact. In the
contrary, experiments show that communication does have a strong impact in that during
only a very few rounds the Winning Number drops down to 0. This convergence should
not be confused with the convergence within thinking steps in the 1-shot setting. In fact,
the iterative game has two dynamical levels: the “fast” dynamics within one round and
k levels of thinking and the “slow” dynamics over rounds. Since convergence in thinking
levels steps is fast, it is a good approximation to assume that at the end of each round
the corresponding stationary value is announced. Our model predicts that in an iterative
setting the sequence of Winning Numbers drops to 0 rapidly according to

ln y∗(t) = ln y∗
0 + t ln

(

ǫ

2 − β (2 − ǫ)

)

.

This linear relationship is in good agreement with real data, as shown in Figure 3, which
presents results from the iterated Guessing Game conducted at the University of Bergen,
Norway.

2 Outline of the basic model

The setting is as follows. There are µ = 1, . . . ,M < ∞ agents or players, who choose a
number xµ ∈ A := [0, N ], where N < ∞, to guess the average number y = α 1

M

∑M

µ=1 xµ

– called the Winning Number – , where α ∈ [0, 1] is fix and known to all players. We
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call A the set of alternatives. Let us consider a representative player µ. For given choices
x1, . . . , xµ−1, xµ+1, . . . , xM of players ν 6= µ, the optimal response of player µ is

xµ =
α

M − α

∑

ν 6=µ

xν = α
M − 1

M − α
x(−µ),

where x(−µ) = 1
M−1

∑

ν 6=µ xν , such that

xµ = y,

i.e. with her best response player µ announces exactly the Winning Number y.
Note that for M large enough, M−1

M−α
≈ 1 and thus xµ ≈ α x(−µ). Naturally, player

µ does not have any information about other players choices, since she must announce
her number simultaneously to the others. Therefore, she has to build beliefs about other
players’ choices. Let (Ω,F) be a measurable space. The random variable Xν : Ω → A for
ν = 1, . . . ,M denotes players’ µ choice in A. The random variable X = 1

M

∑M

µ=1 Xµ is

the average over all announced numbers and Y = α X is the Winning Number. Moreover,

X
(−µ)

= 1
M−1

∑

ν 6=µ Xν and Y (−µ) = α X
(−µ)

. We introduce the following definition.

Definition 1 (Belief). The probability measure P
µ on (Ω,F) is the belief of player µ =

1, . . . ,M . F µ,ν denotes the cumulative distribution function of player ν’s choice Xν under
player µ’s belief P

µ, for all ν, µ = 1, . . . ,M .

The probability measure P
µ is an abstract way of characterizing players’ believes con-

cerning the state of nature driving players choices. Suppose for example the only two
states of nature ω1 and ω2 exist, and that all other players choose the number 0 if the
state ω1 occurs and the number N if the state ω2 occurs. Then each player’s believes is
the probability associated to each state of nature. If one player believes the ω2 occurs with
probability 1, then she would announce the number α N . It is to note that players could
have different beliefs on the state of nature. Nevertheless, to make the model tractable
and to allow us to consider a representative player in the derivation of our results, we
make the following simplifying assumptions.

Assumption 1. Under P
µ, X1, . . . , Xµ−1, Xµ+1, . . . , XM are independent and identically

distributed for all µ = 1, . . . ,M , i.e. other players’ choices are independent under each
player’s belief and have the same distribution functions. Moreover,

Xµ = α
M − 1

M − α
X

(−µ)
.

We assume that players use an iterative thinking process to guess the numbers which
will be announced by other players. We add an index k to our previous notation to
indicate that we are considering the thinking process at step k, i.e. Xν

k for ν = 1, . . . ,M
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is the number that player ν would announce at step k of her thinking process, Xk is the

average over the Xν
k ’s and X

(−µ)

k is the average over the Xν
k ’s for ν 6= µ. Moreover, F µ

k

denotes the cumulative distribution function of Xν
k under P

µ for µ, ν = 1, . . . ,M , where
Assumption 1 is supposed to hold also for X1

k , . . . , Xµ−1
k , Xµ+1

k , . . . , XM
k . Let us consider

player’s µ thinking process.

STEP 0 First, player µ assumes that all alternatives in A are equally probable for
all other players, i.e. F µ

0 corresponds to the uniform distribution on [0, N ]. Under this

assumption, the average number X
(−µ)

0 is the weighted sum of M−1 independent uniformly
distributed random variables on [0, N ] and

y⋆
0 := E

µ [Xµ
0 ] = α

M − 1

M − α

N

2
,

(σ⋆
0)

2 := Varµ(Xµ
0 ) = α2

(

M − 1

M − α

)2
N2

12
.

E
µ [·] and Varµ are the expectation and the variance respectively, under P

µ. Note that y⋆
0

and σ⋆
0 do not depend on µ.

STEP 1 In step 1, player µ takes into account the expected guessing number y⋆
0 she

obtained from step 0. She considers an interval Iµ
1 around this number and assumes

that the Xν
k ’s are independent distributed on Iµ

1 for all ν 6= µ. Here, the reference
probability measure is P

µ. More precisely, player µ believes that for ν 6= µ and conditioning
on unknown realizations lµ1 , uµ

1 of independent random variables Lµ
1 ∼ unif([0, y⋆

0]) and
Uµ

1 ∼ unif([0, N − y⋆
0]) respectively, the interval is

Iµ
1 (lµ1 , uµ

1 , ǫ) = [y⋆
0 − ǫ lµ1 , y⋆

0 + ǫ uµ
1 ] ⊂ [0, N ],

where ǫ ∈ [0, 1] is fix and known to all players. Later we will provide a simulation result,
where it is assumed that ǫ is stochastically in [0, 1], with known distribution function.
Moreover, here it is assumed that the Xν

1 ’s are conditionally independent and uniformly
distributed on Iµ

1 (lµ1 , uµ
1 , ǫ) given lµ1 , uµ

1 . It follows that the conditional expectation of Xµ
1

given lµ1 , uµ
1 is

E
µ [Xµ

1 |(Lµ
1 , U

µ
1 ) = (lµ1 , uµ

1)] = α
M − 1

M − α

[

y⋆
0 +

ǫ

2
(uµ

1 − lµ1 )
]

.

The conditional variance is

Varµ [Xµ
1 |(Lµ

1 , U
µ
1 ) = (lµ1 , uµ

1)] = α2

(

M − 1

M − α

)2
ǫ2

12
(uµ

1 + lµ1 )2 .
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Since lµ1 and uµ
1 are unknown, player µ will base her decision on the unconditional expec-

tation

y⋆
1 = E

µ [Xµ
1 ] = α

M − 1

M − α

[

y⋆
0 +

ǫ

2

(

N − y⋆
0

2
− y⋆

0

2

)]

= α
M − 1

M − α

[

y⋆
0(1 − ǫ

2
) +

ǫ

2

N

2

]

.

Note that y⋆
1 does not depend on µ. The unconditional variance of Xµ

1 can be easily
obtained using that for a random variable X and a σ-algebra B we have

Var [X] = E [Var [X |B]] + Var [E [X |B]] (1)

(Feller 1971). Let B = σ(Lµ
1 , U

µ
1 ), the σ-algebra generated by Lµ

1 and Uµ
1 , then it follows

that

(σ⋆
1)

2 = Varµ [Xµ
1 ] = α2

(

M − 1

M − α

)2
ǫ2

12

[

7

12
N2 − 2

3
Ny⋆

0 +
2

3
(y⋆

0)
2

]

.

Proof. Using that

E
µ [Xµ

1 |Lµ
1 , U

µ
1 ] = α

M − 1

M − α

[

y⋆
0 +

ǫ

2
(Uµ

1 − Lµ
1)
]

,

Varµ [Xµ
1 |Lµ

1 , U
µ
1 ] = α2

(

M − 1

M − α

)2
ǫ2

12
(Uµ

1 + Lµ
1)2

and equation (1) we have

Varµ [Xµ
1 ] = E

µ [Varµ [Xµ
1 |Lµ

1 , U
µ
1 ]] + Varµ [Eµ [Xµ

1 |Lµ
1 , U

µ
1 ]]

= E
µ

[

α2

(

M − 1

M − α

)2
ǫ2

12
(Uµ

1 + Lµ
1)2

]

+Varµ

[

α
M − 1

M − α

[

y⋆
0 +

ǫ

2
(Uµ

1 − Lµ
1)
]

]

= α2

(

M − 1

M − α

)2
ǫ2

12

[

7

12
N2 − 2

3
Ny⋆

0 +
2

3
(y⋆

0)
2

]

.

STEP k Given y⋆
k−1 from step k − 1, player µ believes that all players build intervals

Iµ
k around y⋆

k−1 and the Xν
k ’s are independent distributed on Iµ

k . Analogously to Step
1, conditioning on unknown realizations lµk , uµ

k of independent random variables Lµ
k ∼

unif([0, y⋆
k−1]) and Uµ

k ∼ unif([0, N − y⋆
k−1]) respectively, the interval is given by

Iµ
k (lµk , uµ

k , ǫ) = [y⋆
k−1 − ǫ lµk , y⋆

k−1 + ǫ uµ
k ] ⊂ [0, N ],
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Figure 4: Expected asymptotic Winning Number y∗ = y∗(N, β, ǫ) for M ∼ ∞ and N = 100.

and the Xν
k ’s are conditionally uniformly distributed on Iµ

k (lµk , uµ
k , ǫ). The conditional

expectation of Xµ
k given lµk , uµ

k is

E
µ [Xµ

k |(L
µ
k , U

µ
k ) = (lµk , uµ

k)] = α
M − 1

M − α

[

y⋆
k−1 +

ǫ

2
(uµ

i − lµi )
]

,

and the conditional variance is

Varµ [Xµ
k |(L

µ
k , U

µ
k ) = (lµk , uµ

k)] = α2

(

M − 1

M − α

)2
ǫ2

12
(uµ

k + lµk )2 .

Following the same approach as by Step 1, the unconditional expectation and variance are
respectively

y⋆
k = E

µ [Xµ
k ] = α

M − 1

M − α

[

y⋆
k−1 (1 − ǫ

2
) +

ǫ

2

N

2

]

,

(σ⋆
k)

2 = Varµ [Xµ
k ] = α2

(

M − 1

M − α

)2
ǫ2

12

[

7

12
N2 − 2

3
Ny⋆

k−1 +
2

3
(y⋆

k−1)
2

]

.

y⋆
k and σ⋆

k do not depend on µ.
The sequence of expected Winning Numbers (y⋆

k)i≥0 converges to a limit y⋆ as stated
in the following Proposition. Figure 4 gives the asymptotic expected Winning Number y⋆

as function of α and ǫ.
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Proposition 1. Let M > 0, A = [0, N ] and (y⋆
k, k ≥ 0) the sequence of expected guessing

numbers defined above. Then

y⋆
k = βk+1(1 − ǫ

2
)k N

2
+ β

ǫ

2

N

2

1 − βk(1 − ǫ
2
)k

1 − β (1 − ǫ
2
)

. (2)

where β = α M−1
M−α

. Thus (y⋆
k)i≥0 is decreasing and y⋆

k → y⋆ for k → ∞, where

y⋆ = y⋆(N,M,α, ǫ) =

{

N
2

ǫβ

2−β(2−ǫ)
for (α, ǫ) 6= (1, 0),

N
2

for (α, ǫ) = (1, 0)
. (3)

Consequently, the sequence (σ⋆
k, k ≥ 1) is increasing and

σ⋆ = lim
k→∞

σ⋆
k = α

M − 1

M − α

ǫ√
12

√

7

12
N2 − 2

3
Ny⋆ +

2

3
(y⋆)2. (4)

Proof. From the computation above it follows that

y⋆
0 = β

N

2
and y⋆

k = β

[

y⋆
k−1(1 − ǫ

2
) +

ǫ

2

N

2

]

.

By applying iteratively the last equation we obtain

y⋆
k = β

{

β

(

y⋆
k−2(1 − ǫ

2
) +

ǫ

2

N

2

)

(1 − ǫ

2
) +

ǫ

2

N

2

}

=

= β2(1 − ǫ

2
)2 y⋆

k−2 + α2 ǫ

2

N

2
(1 − ǫ

2
) + β

ǫ

2

N

2
=

= . . . = βk(1 − ǫ

2
)k y⋆

0 + β
ǫ

2

N

2

k−1
∑

l=0

βl(1 − ǫ

2
)l =

= βk+1(1 − ǫ

2
)k N

2
+ β

ǫ

2

N

2

1 − βk(1 − ǫ
2
)k

1 − β (1 − ǫ
2
)

.

For k → ∞ and (β, ǫ) 6= (1, 0) we obtain

y⋆
k → N

2

ǫβ

2 − β(2 − ǫ)
.

For (β, ǫ) = (1, 0), it follows directly from the iteration that y⋆
k = y⋆

0 for all k ≥ 0. Finally,
note that β = 1 if and only if α = 1.
To prove that (σ⋆

k, k ≥ 1) is increasing, note that x 7→ 7
12

N2 − 2
3
Nx + 2

3
x2 is decreasing on

[0, N
2
]. Thus, σ⋆

k = α M−1
M−α

ǫ√
12

√

7
12

N2 − 2
3
Ny⋆

k−1 + 2
3
(y⋆

k−1)
2 increases as y⋆

k−1 decreases to

y⋆. The continuity of f(x) implies that σ⋆
k ր σ⋆.

11



The Proposition states that the thinking process generates a sequence of expected
Winning Numbers that converges quickly to an asymptotic expected Winning Number
y⋆, that depends on α, ǫ, N and the number of players M . The convergence is very
fast, so that y⋆ well approximates the expected Winning Numbers obtained after only a
few levels of thinking. This is shown in Figure 5, which gives the numbers of thinking
levels k that should be performed in order that y⋆

k − y⋆ ≤ δ (note that by Proposition 1,
y⋆

k ≥ y⋆), depending on the parameters β and ǫ. The curves in Figure 5(a) correspond to
fixed numbers of thinking levels k, such that the expected Wining Number after k levels
of thinking y⋆

k and the asymptotic Winning Number y⋆ differ of at most of δ = 2. The
Figure 5(b) gives instead the number of thinking levels as function of ǫ for β = 2

3
and δ = 1

and 2. Here convergence is within only 3-4 steps. The vertical lines correspond to the
usual range for the parameter ǫ, as discussed in the Introduction. From the Proposition 1
we also obtain that y⋆ is strictly positive, unless α = 0 or ǫ = 0, i.e. the asymptotic
expected Winning Number differs from the game-theoretic equilibrium 0 if the confidence
parameter is strictly positive. Finally, the variance of the k-th level of thinking Winning
Number Yk is strictly increasing as k increases to ∞. This is due to the asymmetry of the
intervals Ik generated during the thinking process.
The asymptotic Winning Number y⋆ can be also written as

y⋆ = y⋆
0

ǫ

2 − β (2 − ǫ)
,

i.e. it corresponds to the initial guess y⋆
0 multiplied by a factor c(ǫ) < 1 depending only

on the confidence parameter ǫ (here β and M are given by the game setup). Therefore, if
players were informed about the initial expected Winning Number number y⋆

0, then their
thinking process would generated the asymptotic expected Winning Number y⋆ = y⋆

0 c(ǫ).
This observation is the starting point of our discussion on the iterated Guessing Game of
Section 4.

Next, we derive the density probability function of the Winning Number at each level
of thinking and asymptotically, i.e. for k → ∞. For sake of simplicity, let now con-
sider a countable infinite group of players, i.e. M = ∞. Then by the Central Limit
Theorem, under P

µ and conditionally on the upper and lower bound lµk , uµ
k for the in-

terval Iµ
k (lµk , uµ

k , ǫ), the random variable Xµ
k = α X

(µ)

k is normally distributed with mean
mµ

k = α
(

y⋆
k−1 + 1

2
ǫ (uµ

k − lµk )
)

and variance (sµ
k)2 = 1

12
α2 ǫ2 (uµ

k + lµk )2. The unconditional
density function fk of Xµ

k under P
µ is then given by

fk(x) =
1

y⋆
k (N − y⋆

k)

√
6√

π ǫ α

∫ y⋆

k

0

∫ N−y⋆

k

0

g(u, l; y⋆
k−1) du dl,

where g(u, l; y) = 1
u+l

exp

(

−1
2

(√
12 (x−α y− 1

2
ǫ α (u−l))

ǫ α (u+l)

)2
)

.
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Figure 5: (a) Number of thinking levels such that y⋆
k − y⋆ ≤ 2, depending on β and ǫ. The

curves correspond to fixed numbers of thinking levels k. (b) Number for thinking levels
such that y⋆

k − y⋆ ≤ δ as function of ǫ, for β = 2
3

and δ = 1 (full line) and δ = 2 (dotted
line).
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Figure 6: Asymptotic distribution of the Winning Number Y , with α = 2
3
, N = 100,

ǫ = 0.5 (simulation with M = 10000).

Obviously, each player will announce her guessing number only once. In the limit
k → ∞ we obtain the asymptotic unconditional density f under P

µ

f(x) =
1

y∗(N − y∗)

√
6√

π ǫ α

∫ y∗

0

∫ N−y∗

0

g(u, l; y⋆) du dl. (5)

The density function f is illustrated in Figure 6.

3 The distribution in the case of a heterogenous pop-

ulation

Our results from Section 2 were obtained under the assumption that all players are ho-
mogeneous, i.e. having the same confidence parameter ǫ and also performing the same
number of levels of thinking (see Proposition 1). The advantage of these assumptions is
that we were able to derive a closed form solution for the expected Winning Number at
each level of thinking. The experimental results (see Figures 1 and 2) do not support the
assumption of an homogeneous population of players. For this reason, facing real data,
we take an heterogenous ensemble, by making both parameters – the confidence param-
eter and the number of thinking levels – random variables. Following Camerer, Ho, and
Chong (2003) we will simulate the Winning Number Y under the assumption that the
number of thinking levels is Poisson distributed with some intensity τ . Figure 7 shows
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Figure 7: Relative frequency of guessed numbers due to the model of “Cognitive Hierarchy”
by Camerer, Ho, and Chong (2003). The spectrum of guessed numbers is discrete.

the results obtained by Camerer, Ho, and Chong (2003), where no confidence parameter ǫ
enters in the model (or equivalently, ǫ = 0). The Figure 8(b) shows instead our simulation
result, where the number of thinking level of each player is the outcome of a Poisson dis-
tributed random variable with τ = 4, while the confidence parameter is randomly chosen
in E = {2−i : i = 0, . . . , ν} and ν = 7. For a comparison with our simulation, Figure 8 (a)
reports the results from the German newspaper “Die Zeit” already shown in Figure 1. We
obtain a distribution of the Winning Number, that is now a superposition of a background
distribution which is driven by the confidence parameter ǫ for the several level of thinking,
and a series of peaks which correspond to the realizations of ǫ near to zero.

4 Convergence towards equilibrium

We finally consider the case that the Guessing Game is played for a number of rounds. The
rule is the same for any round and corresponds to the 1-shot game discussed previously,
while between any two rounds the Winning Number determined in the preceding round
is made public. Within each round any player performs k levels of thinking. We can
assume that all players perform the same number of iterations, since the convergence in
each round is rapid, as shown in Proposition 1. Therefore, we assume that the Winning
Number announced at the end of each period is the respective asymptotic Winning Number
of this round, denoted by y⋆(t). While in round 1 all players start with the initial guess
y⋆(0) = β N

2
the Winning Number announced at the end of round 1 is y⋆(1) = c(ǫ1) y⋆(0),

where ǫ1 is the confidence parameter of the first round and c(·) is defined as in Section 2.
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Figure 8: Distribution of the Winning Number Y , under the assumptions that the number
of thinking levels is Poisson distributed with intensity τ = 4 and the confidence parameter
ǫ is uniformly distributed on E = {2−i : i = 0, . . . , ν} with ν = 7. The other parameters
are α = 2

3
, N = 100 and M = 10000.
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Estimates of ǫ in various iterated Guessing Games
sessionα a 2

3

b 2

3

c 2

3

d 2

3

e 2

3

f 2

3

g 1

2

h 1

2

α 2/3 2/3 2/3 2/3 2/3 2/3 1/2 1/2
ǫ .99 .42 .76 .71 .35 .5 .33 .2

R2 0.99 0.98 0.96 0.98 0.97 0.99 0.98 0.97

Table 2: Estimation of the confidence parameter ǫ for several experimental results.
a 2

3

, b 2

3

, c 2

3

, and d 2

3

are Nagel’s sessions 4 − 7 from Nagel (1995) in which α = 2/3, while

e 2

3

is from Weber (http://www.andrew.cmu.edu/user/rweber/) and f 2

3

is from the experi-

ments at the University of Bergen, while g 2

3

, h 1

2

are Nagel’s sessions 1, 3 for α = 1/2 taken

also from Nagel (1995).

The number y⋆(1) is made public to all players at the beginning of round 2, so that
all players start their new thinking process of round 2 with y⋆(1) and they arrive at
y⋆(2) = y⋆(1) c(ǫ2). Note that since parameters β, N are given by the game rule, y⋆(t)
essentially only depends on the sequence (ǫ1, . . . , ǫt) of confidence parameters up to time
t. It might be expected that due to some adaptive mechanisms, ǫt might change over
rounds. In fact, as a first order approximation we assume that the confidence parameter
is constant over rounds, i.e. ǫt = ǫ + O(t) for all t. Under these assumptions the iterative
setting is governed by the following recurrence equation

y⋆(t) ≈ y⋆(t − 1)
ǫ

2 − β (2 − ǫ)
, (6)

where y∗(0) = β N
2
. Hence

y⋆(t) ≈ y⋆(0)

(

ǫ

2 − β (2 − ǫ)

)t

,

or

ln y⋆(t) ≈ ln y⋆(0) + t ln

(

ǫ

2 − β (2 − ǫ)

)

.

Therefore, since ǫ
2−β (2−ǫ)

< 1, as t → ∞ the expected Winning Number y∗(t) converges
to 0. The following Figure 9 show real data from experimental studies. In Figure 9 three
sessions are shown; data are from Nagel (1995). The agreement with the prediction of our
model with constant confidence parameter ǫ is surprising well. On the other hand it is
not surprising that ǫ might be different in different experiments. Table 2 summarizes the
numerical estimates.
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Figure 9: Data of the iterated Guessing Game due to Nagel (sessions 4, 5, 7) with α = 2/3
played with 15 - 18 subjects with ǫs ≈ 1, 0.4, 0.7 (Nagel 1995).

5 Conclusion

Ever since Keynes, the α-Beauty Contest has served as a paradigmatic framework for
strategic price formation processes on markets. It was shown experimentally that the 1-
shot α-Beauty Contest is a non-equilibrium game under bounded rationality conditions,
while equilibrium is established after a sufficient number of iterative rounds. Unfortu-
nately today non-equilibrium systems are only poorly understood, i.e. there does not
exist a general theory of non-equilibrium systems describing their typical properties and
their routes into equilibrium. Hence without any general theory, one is left with studies
of exemplary systems.

In this note, we studied the α-Beauty Contest with arbitrary parameters and in dif-
ferent settings, such as the 1-shot setting and the iterative setting with communication
between rounds. Our studies started from considerations of real data. Experimental data
of the 1-shot setting of the 0-equilibrium game exhibit a common pattern: The spectrum
of announced numbers is a superposition of a skew background distribution and a regime
of extra ordinarily often chosen numbers. Our basic model proposed is able to explain this
pattern. It reproduces as well as generalizes classical results. It is based on the assump-
tion that players successively update their recent beliefs according to estimating intervals
rather than numbers. Note that our model has only one free parameter ǫ, which is the a
measure for the confidence of the player in her guess. It was shown analytically that if
players have only finite confidence in their recent belief, the expected Winning Number
is strictly positive. The Nash equilibrium is obtained if the players’ confidence in their
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guesses is infinite. The rate of convergence is shown to be high so that the expected
asymptotic Winning Number is obtained after only very few thinking steps. This result
of the model is consistent with the observation by Nagel and others that about 4 levels of
thinking are sufficient to generate this expected Winning Number. If the players’ popula-
tion is heterogenous with respect to the level of confidence, i.e. if the confidence parameter
varies over the player’s population, numbers announced will have a highly skewed distri-
bution in agreement with real data. Hence our model explains the existence of a skew
distribution of announced numbers observed in real data. The combination of Camerer’s
Cognitive Hierarchy Theory with our model was shown to be able to reproduce the typical
pattern observed in real data. A model of the α-Beauty Contest must also describe the
route into equilibrium in the iterative setting as is observed in experiments. It is a straight
forward consequence of the fast convergence over thinking steps, that convergence towards
equilibrium should be polynomial in the number of rounds played. This prediction from
our model is in good quantitative agreement with various experimental data.

On a market, there is partial information exchange among traders. Thus it would
be interesting to consider the case of partial information among players between rounds.
While our model makes clear predictions about the rate of convergence to maximum
information gain and equilibrium, concrete data are needed for further investigation.
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