E D I T O R I A L Propelling ST-segment elevation myocardial infarction systems of care into the air 265 a greater prevalence of hemodynamic compro‑ mise presumably due to delays in STEMI recog‑ nition. Although the authors do not character‑ ize in ‑hospital outcomes, the use of thrombo‑ lytic therapy, and how often HEMS could not be Prompt recognition and early coronar y ar‑ tery reperfusion are the cornerstones of any ST ‑segment elevation myocardial infarction (STEMI) systems of care. American and Euro‑ pean guidelines recommend rapid transport of patients to a STEMI receiving center capable of high ‑quality primary percutaneous coronary in‑ tervention (PCI), if first medical contact to PCI reperfusion can be achieved within 120 min‑ utes.1,2 The boundary between rural and urban areas has typically been assigned by civil bound‑ aries. It has been long understood that geograph‑ ic disparities exist for many rural communities that are too distant to reliably provide time‑ ly STEMI transport. As urban cities expand in population density and geographic size, time‑ ly STEMI transport is jeopardized due to dis‑ tances from fringes of those areas and congest‑ ed traffic patterns. The alternative to primary PCI defaults to primary thrombolytic therapy; however, the wealth of clinical trial evidence in‑ dicates that thrombolytic therapy is associated with worse ischemic and bleeding outcomes in comparison with timely PCI. The integration of helicopter emergency medical services (HEMS) in modern STEMI systems of care has improved the timeliness of transport of these patients and improved outcomes.3,4 In this issue of Kariologia Polska (Kardiol Pol, Polish Heart Journal) Świeżewski et al5 investigat‑ ed in their retrospective analysis the patient char‑ acteristics and early outcomes of more than 6000 patients with STEMI that were transferred from rural and urban communities to STEMI receiv‑ ing centers in Poland. The authors observed that HEMS facilitated efficient interhospital trans‑ port of patients with STEMI for PCI, and patients who were transported from rural locations had Correspondence to: Amish N. Raval, MD, FACC, FAHA,  Division of Cardiovascular  Medicine, Department  of Medicine, University  of Wisconsin School of Medicine  and Public Health, H4/568  Clinical Sciences Center,  600 Highland Avenue, Madison,  Wisconsin, 53 792, United States,  phone: +1 608 263 0836,  email: anr@medicine.wisc.edu Received: March 25, 2020. Accepted: March 26, 2020. Published online: April 24, 2020. Kardiol Pol. 2020; 78 (4): 265-266 doi:10.33963/KP.15300 Copyright by the Author(s), 2020 E D I T O R I A L Propelling ST‑segment elevation myocardial infarction systems of care into the air Amish N. Raval1, Amy Shepard2 1  Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States 2  University of Wisconsin -Health, Madison, Wisconsin, United States RELATED ARTICLE by Świeżewski et al, see p. 284 FIGURE 1 Box and whisker plot showing the time from the first medical contact to percutaneous coronary  intervention reperfusion in patients transferred from a rural  location to the University of Wisconsin -Madison STEMI receiving center by ground emergency medical services  (GEMS; n = 219), helicopter emergency medical services (HEMS; n = 260), or intercepted by HEMS from GEMS (n = 20) from January 1, 2015 to September 30, 2019. Despite similar  overall distances travelled, HEMS intercepting with GEMS demonstrated the lowest median transfer times (P <0.03,  paired t test). The bottom whisker, bottom edge of the box,  top edge of the box, and top whisker indicate the 5th, 25th,  75th, and 95th percentiles, respectively. The x symbol  represents the median value (50th percentile). The horizontal  line represents the mean. GEMS HEMS Intercept 300 250 200 150 100 50 0 M in ut es K ARDIOLOGIA POLSK A 2020; 78 (4)266 5 Świeżewski SP, Wejnarski A, Leszczyński PK, et al. Characteristics of urban ver- sus rural utilization of the Polish Helicopter Emergency Medical Service in patients  with ST-segment elevation myocardial infarction. Kardiol Pol. 2020; 78: 284-291. 6 Delgado MK, Staudenmayer KL, Wang NE, et al. Cost -effectiveness of heli- copter versus ground emergency medical services for trauma scene transport in  the United States. Ann Emerg Med. 2013; 62: 351-64.e19. dispatched due to weather conditions, the overall HEMS STEMI transport effort seems favorable for patients with STEMI in and around Poland. Notably, the authors describe close coordina‑ tion between ground emergency medical servic‑ es (GEMS) and HEMS and this was particular‑ ly evident for rural transport. In our own insti‑ tution’s experience involving STEMI transport from rural Wisconsin between 2015 and 2019, HEMS intercept with GEMS at designated sites was associated with the lowest first medical con‑ tact to coronary reperfusion times, in compar‑ ison with GEMS and HEMS transfer alone, de‑ spite similar median distances travelled (FIGURE 1). Gunnarsson et al3 observed that having physi‑ cians on board HEMS for STEMI transport im‑ proved in ‑hospital outcomes. Modern HEMS systems are equipped with enhanced aviation safety technology and are now capable of transporting patients in shock with percutaneous circulatory and oxygen‑ ation support devices. Unfortunately, little is understood regarding the financial cost implica‑ tions of HEMS for STEMI transport in the Unit‑ ed States, Europe, and elsewhere. In another example, the cost ‑effectiveness of HEMS for the transfer of trauma patients is dependent upon the mortality and morbidity reduction that the HEMS transfer affords and over ‑triage of patients with minor injuries.6 Until such data are available, judicious utilization of HEMS for STEMI transfer to enable timely primary PCI seems to be a reasonable use of this resource within the framework of a comprehensive STE‑ MI system of care. ARTICLE INFORMATION DISCLAIMER The opinions expressed by the author are not necessarily those  of the journal editors, Polish Cardiac Society, or publisher. CONFLICT OF INTEREST None declared. OPEN ACCESS This is an Open Access article distributed under the terms  of  the  Creative  Commons  Attribution -NonCommercial -NoDerivatives  4.0  In- ternational License (CC BY -NC -ND 4.0), allowing third parties to download ar- ticles and share them with others, provided the original work is properly cited,  not changed in any way, distributed under the same license, and used for non- commercial purposes only. For commercial use, please contact the journal office  at kardiologiapolska@ptkardio.pl. HOW TO CITE Raval AN, Shepard A. Propelling ST-segment elevation myo- cardial  infarction systems of  care  into  the  air. Kardiol Pol. 2020; 78: 265-266.  doi:10.33963/KP.15300 REFERENCES 1 O’Gara PT, Kushner FG, Ascheim DD, et al; American College of Cardiology  Foundation/American Heart Association Task Force on Practice Guidelines. 2013  ACCF/AHA guideline for the management of ST -elevation myocardial infarction:  a report of the American College of Cardiology Foundation/American Heart Associ- ation Task Force on Practice Guidelines. Circulation. 2013; 127: e362-425. 2 Ibanez B, James S, Agewall S, et al; Group ESCSD. 2017 ESC Guidelines for  the management of acute myocardial infarction in patients presenting with ST- -segment elevation: the Task Force for the management of acute myocardial in- farction in patients presenting with ST -segment elevation of the European Society  of Cardiology (ESC). Eur Heart J. 2018; 39: 119-177. 3 Gunnarsson SI, Mitchell J, Busch MS, et al. Outcomes of physician -staffed ver- sus non -physician -staffed helicopter transport for ST-elevation myocardial infarc- tion. J Am Heart Assoc. 2017; 6: e004936. 4 Schneider MA, McMullan JT, Lindsell CJ, et al. Reducing door -in door -out inter- vals in helicopter ST -segment elevation myocardial infarction interhospital trans- fers. Air Med J. 2017; 36: 244-247. https://doi.org/ https://doi.org/ https://doi.org/ https://doi.org/10.1016/j.annemergmed.2013.02.025 https://doi.org/10.1016/j.annemergmed.2013.02.025 https://doi.org/10.1016/j.annemergmed.2013.02.025 https://doi.org/Connection: close https://doi.org/Connection: close https://doi.org/Connection: close https://doi.org/Connection: close https://doi.org/Connection: close https://doi.org/10.1093/eurheartj/ehx393 https://doi.org/10.1093/eurheartj/ehx393 https://doi.org/10.1093/eurheartj/ehx393 https://doi.org/10.1093/eurheartj/ehx393 https://doi.org/10.1093/eurheartj/ehx393 https://doi.org/10.1161/JAHA.116.004936 https://doi.org/10.1161/JAHA.116.004936 https://doi.org/10.1161/JAHA.116.004936 https://doi.org/10.1016/j.amj.2017.04.004 https://doi.org/10.1016/j.amj.2017.04.004 https://doi.org/10.1016/j.amj.2017.04.004