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This paper describes PedHunter, a software package that facilitates creation and verification of pedigrees within
large genealogies. A frequent problem in medical genetics is to connect distant relatives with a pedigree.
PedHunter uses methods from graph theory to solve two versions of the pedigree connection problem for
genealogies as well as other pedigree analysis problems. The pedigrees are produced by PedHunter as files in
LINKAGE format ready for linkage analysis. PedHunter uses a relational database of genealogy data, with tables
in specified format, for all calculations. The functionality and utility of PedHunter are illustrated by examples
using the Amish Genealogy Database (AGDB), which was created for the Old Order Amish community of
Lancaster County, Pennsylvania.

Many genetic studies require linkage analysis, a key
step toward positional cloning of disease suscepti-
bility genes. Linkage analysis requires describing
pedigrees for a set of people exhibiting a specific
trait and verifying relationships in pedigrees (Poly-
meropoulos et al. 1996; Khoury et al. 1987). If a
pedigree is implicitly part of a large genealogy, it is
possible to use computer science techniques to find
it. There may be many potential (sub)pedigrees that
connect the individuals with the trait, and it is de-
sirable to find a (sub)pedigree that is optimal in a
rigorous mathematical sense. This paper describes
software tools, called PedHunter, to keep genealogi-
cal data in a relational database and to analyze the
data systematically. PedHunter solves two distinct
formulations of the optimal pedigree connection
problem, as well as other problems related to pedi-
gree construction, verification, and analysis.

Closed populations are a rich source of material

for medical genetics studies. For example, closed
populations provide powerful data sets to map re-
cessive disease genes by homozygosity mapping
(Kruglyak et al. 1995). Some closed populations
have compiled genealogies because of their inter-
ests, and these genealogies enhance the utility of
the populations for genetic studies. The Old Order
Amish of Lancaster County in Pennsylvania is one
such population. Most ancestors of the Amish in the
United States migrated in the early eighteenth cen-
tury from Germany and Switzerland. They settled in
Berks County, Pennsylvania, and gradually radiated
to other parts of Pennsylvania, Ohio, Indiana, Illi-
nois, and Iowa. Some settled in Lancaster County,
in about 1795. Information about Amish pedigrees
of Lancaster County is available in a book called the
Fisher Family History (Fisher Family History 1988),
also known as the ‘‘Fisher book,’’ which traces the
lineage of the Amish in magnificent detail. In spite
of the rich information in this book, it is not easy to
use in medical genetics for a number of reasons. (1)
The book (1988 version) has ∼550 pages of informa-
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tion in small font. (2) The organizers grouped infor-
mation about extended families in the book. This
ordering is useful for Amish readers interested in
their proximal genealogy but is problematic for the
construction of extended pedigrees needed for ge-
netic analysis. (3) Many people have the same first
and last name. (4) There are no pedigree diagrams;
only text. (5) Some information about a person may
appear in several places because that person has his/
her own record and also appears in the records of
parents and children. Data are sometimes inconsis-
tent across multiple entries.

Because of these limitations, tracing family re-
lationships for genetic studies requires laborious
searching. This paper describes a database called
Amish Genealogy Database (AGDB) for the geneal-
ogy of the Old Order Amish of Lancaster County,
Pennsylvania. AGDB contains information from the
1988 version of Fisher Family History that has been
corrected for errors and contains additional infor-
mation compiled subsequent to 1988. Keeping the
data in AGDB and querying the data with PedHunter
facilitates usage of the genealogy by medical geneti-
cists.

Beyond the Old Order Amish, PedHunter is a
general tool that can be used to analyze any gene-
alogy. The use of PedHunter requires only a database
with information for that population. For reasons of
confidentiality no phenotype information is stored
in the database. Phenotype information known
only by the user may be helpful in posing geneti-
cally interesting queries.

Tools from Computer Science

This section summarizes relevant data storage and
data analysis tools from the domain of computer
science and suggests how they can be used to make
a genealogy database. The data in AGDB are stored
in a relational database (Date 1990). PedHunter is de-
signed to use relational databases developed in
SYBASE. SYBASE provides an implementation of
Structured Query Language (SQL) useful for answer-
ing simple queries and an interface with the C pro-
gramming language useful for implementing more
complex queries.

Data Organization

Each record in the Fisher book contains information
about a nuclear family. For example (information in
this example of a family record is fictitious, but the
syntax is accurate),

894. Noah Karp b Jan. 8, 1938, d May 9, 1988, farmer,
m Dec. 24, 1957, Mary Green (4211) b Sep. 12, 1940,
d 1962. Children: Victor (895), Sarah (4200), Amy. m2
1964, Annie Green (4211) b Aug. 23, 1942. Children:
Henry.

895. Victor Karp (894) b May 24, 1959, m June 6,
1982, Mildred Sweeney.

4211. John Green b Dec. 24, 1920, m Sarah Fisher.
Children: Annie (894), Mary (894).

The data were obtained as an ASCII text file
with some typesetting commands inserted. Using
standard methods from the theory of formal lan-
guages these family records were parsed and col-
lated into a record of the information for each per-
son.

Each record in the Fisher book contains the fol-
lowing pieces of information relevant to genealo-
gies:

● Name of family head; e.g., Noah Karp, Victor Karp,
and John Green in the above three examples, re-
spectively.

● A number called the Fisher number or family
number. For the above examples, the Fisher num-
bers are 894, 895, and 4211, respectively.

● If the parents of a family head are known, the
record contains the Fisher number for that family;
e.g., record 895 refers to record 894, Victor’s par-
ents.

● List of spouses. For each spouse, the record gives
the name and attempts to give a Fisher number in
following order: (1) Fisher number for the family
in which spouse is the family head; (2) Fisher
number for the family in which spouse is a child.
For example, in record 894 Noah is married first
to Mary and then to Annie Green; the Fisher
number 4211 following those names refers to the
family in which they were children.

● List of children of each spouse. This list contains
names of children and attempts to give a Fisher
number for each child in the following order: (1)
Fisher number for the family in which the child is
the family head, e.g., 895 for Victor Karp in record
894; (2) Fisher number for the family in which the
child is a spouse, e.g, 894 for both Annie and
Mary in record 4211.

Data Inconsistencies

The analysis of data with a relational database re-
quires (1) resolving or deleting inconsistencies in
the data, (2) designing the database, (3) creating the
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tables, and (4) writing programs to analyze the da-
tabase. Of these four steps, the only task that is spe-
cific to a population is deleting or resolving incon-
sistencies. The other three tasks are greatly facili-
tated by using a commercial SQL implementation.
Finding inconsistencies is feasible if the raw geneal-
ogy data have redundant and conflicting informa-
tion.

Because of the structure of the records in the
Fisher book, the detectable inconsistencies include
parent–child relationships and husband–wife rela-
tionships. Some inconsistencies are caused by infor-
mation that is present in one record but absent in
another; it is assumed that the information is cor-
rect in this case. Other inconsistencies are appar-
ently caused by typographical errors in Fisher num-
bers, in which case it may be straightforward to
decide which numbers are (in)correct. A dispropor-
tionate number of the errors occur in the data en-
tered after 1988, presumably because those data
have not been published and hence have not been
proofread by large numbers of Amish. In addition,
the number of recorded births, deaths, and mar-
riages per year dropped precipitously after 1988,
suggesting that much recent information is missing.
Efforts have been initiated with the Amish commu-
nity to correct remaining errors and update records.

Database Design

Each person in the database is assigned a unique
integer, called the program id. There are two cen-
tral tables in the database—the person table and the
relationship table. The person table has information
exclusive to the individuals, and the relationship
table keeps information relating the individuals by
containing an entry for each couple and a list of
their children, if any, in terms of their program
id. Please see Appendix for details of database de-
sign.

Analyzing the Database

After the database is created, the next step is to use
analytic tools to extract useful information. The
analytic tools in PedHunter rely heavily on graph
theory (Even 1979). In the Appendix, the notion of
a graph is introduced along with related terminol-
ogy.

RESULTS AND EXAMPLES

This section describes the queries available in
PedHunter and shows the utility of PedHunter with a

usage of AGDB on a published pedigree. PedHunter
supports functions for finding relatives of individu-
als (father, mother, siblings, half-siblings, uncles
and aunts, children, first cousins, ancestors) as well
as functions for testing if two individuals are related
according to a specified relationship. The more
complicated queries supported by PedHunter are as
follows:

● lca(S): [lowest common ancestors for S] This
query finds the most recent common ancestors of
the given set of people S; the set of most recent
common ancestors of S is the set of people A such
that (1) everyone in A is an ancestor of everyone
in S, and (2) no one in A has a descendant who is
also an ancestor of everyone in S.

● asp(S): [all shortest paths pedigree for S] If there
is at least one common ancestor for the given set
of people S, then for each lowest common ances-
tor a, asp(S) finds the pedigree containing all
shortest paths between a and each person in S.
PedHunter contains an implementation of Dijk-
stra’s Algorithm (Dijkstra 1959) for finding all
shortest paths. PedHunter takes a few seconds for
creating modest size pedigrees (e.g., connecting
85–90 individuals resulting in a pedigree of ∼500
individuals). This is a significant improvement
over the tens of hours typically required to create
such pedigrees by manually searching the Fisher
book.

● minped(S): [minimal pedigree for S] If there is at
least one common ancestor for the given set of
people S, then for each lowest common ancestor
A, minped(S) finds a pedigree connecting A and
each person in S such that (1) the pedigree has the
minimum number of vertices, and (2) every path
from A to each person in S is the shortest path.
The problem in finding a minimal pedigree for S
is the Steiner tree problem, with asp(S) being the
given graph and S being the set of vertices to be
connected. PedHunter uses a ‘‘branch and bound’’
algorithm for finding a minimal pedigree (de-
scribed in the Appendix).

● pedigree length(X,N): Prints a pedigree contain-
ing all descendants of X who are at most N gen-
erations apart from X. For example, pedigree-

length(X,2) lists all children and grandchildren
of X.

● kinship(X,Y): Computes the kinship coefficient
between X and Y where kinship(X,Y) is the prob-
ability that a randomly selected allele of X and a
randomly selected allele of Y are identical by de-
scent. PedHunter uses the algorithm in Weir
(1996, pp. 204–206).
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● inbreeding(X): Computes the inbreeding coeffi-
cient for X where inbreeding(X) is the probability
that the two alleles of X are identical by descent.
Because X inherits a randomly selected allele from
mother and a randomly selected allele from fa-
ther, inbreeding(X) = kinship(X’s mother, X’s father).
PedHunter uses the algorithm in Weir (1996, pp.
204–206).

● print(X): Print all information about person X.

All pedigrees are produced in LINKAGE format
(Terwilliger and Ott 1994). The PedHunter output
pedigree files can be read into some versions of pedi-
gree/genotype maintenance programs such as
CYRILLIC 2.0 (Chapman 1990) and Pedigree/Draw
5.0 (Mamelka et al. 1993). Two of the drawings here
were produced by feeding PedHunter output into
Pedigree/Draw 5.0.

The all shortest paths pedigree may contain
many connections between pairs of individuals, and
it can be quite large. This pedigree may be too com-
plicated for linkage analysis with current tools and
may be impossible to draw comprehensibly (e.g.,
the drawing in McKusick et al. 1964). These two
problems justify the desire for a minimal pedigree
that is a subpedigree of the all shortest paths pedi-
gree. A minimal pedigree can be used to explain
most likely paths of inheritance of the mutant trait
gene. A minimal pedigree can be used as a starting
point for the geneticist to reinstate more individuals
that are in the all shortest paths pedigree in an it-
erative linkage analysis.

To verify a given pedigree (P), one must verify
all paths in P. A path is considered to be verified if
the parent–child relationships represented by the
edges on the path are consistent with the informa-
tion in the database. The paths in P can be verified
as follows:

1. Find the set of people S in P who do not have a
child in P and have at least one parent in P.

2. Find asp(S). Paths in P that are present in asp(S)
are verified. If all the paths in P are verified, the
verification is complete.

3. For each ‘‘long’’ path p from u to v that is not yet
verified, find asp(R) where the elements of R are u
and v. If p is a path in asp(R), p is verified. If all the
paths in P are verified, verification is complete.

4. For each edge u → v in P that is not yet verified,
do the query is child(v,u), which returns TRUE if
v is a child of u and FALSE otherwise. If it returns
FALSE, the edge is in error. [It can be corrected by
using query features father, mother, ancestor, chil-
dren, as appropriate for the pedigree. For in-

stance, if confidence about v is high, u can be
corrected by using father(v) and mother(v).]

It is not practical to have a query feature for
verifying an entire pedigree at once because it is
difficult to determine what to do when there are
multiple related errors in the pedigree. In many
cases, the corrections would depend on knowledge
not present in the pedigree database.

The utility of AGDB and PedHunter are demon-
strated in an example concerning a genetic disorder
currently under study. McKusick (1978) published a
pedigree that connects the children of six couples.
Field work and consultation with the authors of the
original study yielded the names of the persons, so
they could be accessed in AGDB. Three of the
couples are present in the Fisher book and AGDB
and will be used as a test example. Part of the pub-
lished pedigree that connects the three couples that
are in AGDB is shown in graph representation in
Figure 1 and in pedigree representation in Figure 2.
The pedigree in Figure 2 is designated MKped. Let S
be the set with elements 10, 16, 22, 26, 27, 32, rep-
resenting the couples that are in AGDB. Using lca(S),
it turns out that there are five least common ances-
tors for the three couples. Figure 3 shows the all
shortest paths pedigree (ASPped) for the least com-
mon ancestor that has the maximum number of
vertices in common with MKped. A minimal pedi-

Figure 1 Graph for the partial McKusick pedigree.
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gree with the same least common ancestor is shown
in Figure 4.

MKped (Fig. 2) can also be used to illustrate
pedigree verification. The paths in MKped that are
verified by ASPped (Fig. 3) are as follows: (1) path
from 6 to 10; (2) path from 14 to 16; (3) path from
19 to 22; (4) path from 23 to 26 and 27; and (5) path
from 29 to 32.

According to ASPped 19 and 23 are siblings,
whereas in MKped 18 and 23 are siblings and 19 is a
child of 18. This discrepancy is due to an error in
MKped—person 18 should not be present in
MKped.

The following relationships are verified using
is child/siblings query features: (1) 5 is the father of
6; (2) 13 is the father of 14; (3) 17 is the mother of
19 and 23; (4) 28 is the mother of 29; and (5) 17 and
28 are siblings.

DISCUSSION

Much attention has been paid toward database
management and analysis [e.g., GDB (Fasman et al.
1997), GenBank (Benson et al. 1997), SWISS-PROT
(Bairoch and Apweiler 1997)] of genomes as well as
to making extensive family trees [e.g., GEDCOM
(1997), GED2HTML (1997)] but there is no tool suf-
ficient for a medical geneticist who has a large
genealogy as well as genetic information for some
of the individuals. Existing software packages
[e.g., CYRILLIC (Chapman 1990), DGENE (Lange et
al. 1988), Pedigree/Draw (Mamelka at al. 1993),
PEDRAW/WPEDRAW (Curtis 1990), PhenoDB
(Cheung et al. 1996), SCHESIS (Round 1989)] man-
age genetic information, store pedigrees, and draw
pedigrees but do not automatically extract or verify
pedigrees from a genealogy. PEDSYS (Dyke 1992)
supports pedigree extraction but not based on
the type of optimality criteria implemented in
PedHunter. PedHunter provides tools to organize ge-
nealogical information in a database and a query
facility to access the database. This functionality
can create and verify pedigrees according to criteria
specified by the user. Advantages of keeping data in
a relational database include the following:

● Simplicity: The concept of a relation provides a
self-contained means of representing all types of
data relationships using simple tables.

● Flexibility and Restructuring: There is complete
flexibility in database design. Relations can be
combined or broken down in other relations with
ease.

● Accessibility and Protection: Keeping data in a rela-
tional database provides variable and ready access

Figure 3 All shortest paths pedigree (ASPped).

Figure 2 Partial McKusick pedigree (Mkped).
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to all data. Data can be protected and can be used
by multiple users.

● Update: Updating the information in a database is
simple because one can verify whether informa-
tion is consistent. It is important to keep data
current for future use.

● Optimization: A good database design does not du-
plicate information, which reduces data storage
and redundancy.

● Easy Storage: Physical data storage and logical da-
tabase structure are independent. There is no worry
about where and how the files are stored and they
can be accessed using the relational tables.

The usage of PedHunter should be extensible to
other existing genealogies besides the Fisher book:
(1) There are other genealogy books of the Old Or-
der Amish that overlap with the Fisher book; (2)
there are genealogy books of other Amish commu-
nities from the midwestern United States; (3) there
are genealogy books of other closed North American
communities, such as Hutterites and Mennonites;
(4) there are genealogies loosely compiled for sev-
eral island populations and for parts of Finland. Ef-
forts have been initiated to obtain some of these
genealogies, to obtain permission to computerize
them, and to get the raw data into a computer-
readable text file. To use PedHunter on a genealogy,
one need only create a database with two tables—
person table and child parent table, as described
earlier and use the utility program provided to cre-
ate generation table.

PedHunter is freely avail-
able to scientists studying
populations with written
genealogies. Interested scien-
tists should send an electronic
mail request to richa@helix.
nih.gov or to schaffer@helix.
nih.gov. AGDB is intended to
be available to scientists con-
ducting National Cancer In-
stitute Internal Review Board
(IRB)-approved research on
the Old Order Amish. Access
to AGDB is carefully con-
trolled and limited by IRB
protocol. In the initial phase,
the IRB approved usage by
five groups that have proto-
cols approved by their IRBs to
study the Amish. Each user
group is represented by at
least one coinvestigator on

the protocol for AGDB. More user groups meeting
these criteria can be added.

The hunt for disease susceptibility genes has be-
come increasingly automated. One step that has
been lacking automated tools is that of connecting
distant relatives with the same phenotype into a
pedigree for linkage analysis. When the desired
pedigree is implicitly part of a large, existing gene-
alogy, computer science techniques can be adapted
to extract the pedigree or to verify a putative pedi-
gree systematically. PedHunter provides this automa-
tion. The utility of PedHunter is demonstrated by
using it to query a database, AGDB, of a large Old
Order Amish genealogy. These tools were used to
verify and correct parts of a previously published
pedigree. The combination of AGDB and PedHunter
are immediately useful in ongoing genetic studies of
this population (e.g., Stone et al. 1998).

Conversations with geneticists who use the
Fisher book suggest that they are content when they
can find any pedigree to connect a specified set of
individuals. There is no reason to believe that the
first pedigree found is the best. In contrast, the all
shortest paths and Steiner criteria that PedHunter of-
fers are mathematically rigorous and genetically
sensible.

METHODS

AGDB was created in SYBASE SQL Server release
11.0.x of the SYBASE database management soft-

Figure 4 Minimal (Steiner) pedigree.
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ware. The functions are implemented using Trans-
act-SQL and C version of Open Client DB-Library.
PedHunter was developed on Unix System V release
4.0 running under SunOS 5.5.1 using Sun Work-
Shop Compiler C 4.2 but it is compatible with other
Unix computers. All of the PedHunter functions are
available as executable files that can be used from
the command line prompt; AGDB is available to sci-
entists conducting IRB-approved research on the
Old Order Amish. The automatic compilation of the
Fisher book genealogy into AGDB was approved by
the National Cancer Institute IRB at NIH.
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APPENDIX

This Appendix describes the database design, graphs
and related terminology, and method used by
PedHunter to solve the minimal pedigree, or Steiner
pedigree problem.

Database Design

Each person in AGDB is assigned a unique integer,
called the program id. Utility programs were writ-
ten to translate from a Fisher id to the program id
of the first person in that record, and back from a
program id to the Fisher id of one record where
that person is listed. There are two central tables in
the database—the person table and the relationship
table.

The person table (person table) has informa-
tion exclusive to the individuals. The columns of
this table are program id, Name, Birth date, Death
date, Address, Gender, Special status, Number of
spouses, and Other Information. The Special status
field contains information about whether a person
is a twin, triplet, foster child, or adopted child. The
relationship table (child parent table) keeps in-
formation relating the individuals. It contains an
entry for each couple and a list of their children, if
any, in terms of their program id specified in per-
son table. The columns of child parent table
are program id of father, program id of mother,

Marriage date, and program id of each child. The
last field is a list of program ids of each child, if
the couple has any. As each row/column combina-
tion can have only one value, the list is kept as a
string with special delimiters between children.

PedHunter contains a utility program for creat-
ing generation table, which contains the maxi-
mum generation level for each person relative to
other persons in the database. The two columns of
this table are program id of the individual and
Maximum generation level. The generation table
is used in computations including inbreeding and
kinship coefficients.

Graphs and Related Terminology

A graph is a mathematical representation of objects
and the relationship between pairs of objects. Some
standard graph terminology is defined below and
illustrated by references to the graph in Figure 1.
The set of objects represented in a graph are called
its vertices. If two objects are related, they are joined
by an edge. For convenience, the following notation
is used:

● V(G) represents the set of vertices for graph G.
● E(G) represents the set of edges for graph G.
● e is u–v if edge e joins vertices u and v and the

order of u and v is not important. Such an edge is
called an undirected edge.

● e is u → v if edge e joins vertices u and v and the
edge is ordered from u to v. Such an edge is called
a directed edge.

● v is in the set V(G) if v is a vertex in graph G.
● e is in the set E(G) if e is an edge in graph G.

A graph is a directed graph if its edges are di-
rected edges; otherwise, it is an undirected graph. A
pedigree can be represented by a graph that has a
vertex for each person and an edge for each child–
parent pair among the persons in the pedigree.
Sometimes it is desirable to make the graph directed
by directing each edge from the vertex for parent to
the vertex for child. For example, the pedigree (Fig.
2) that is used later as an example, can be repre-
sented as in Figure 1. It is useful to view a pedigree
as a graph because it traces the passage of genetic
information over generations and provides a conve-
nient mathematical representation. A graph repre-
senting a pedigree is called a pedigree graph. For the
pedigree graph in Figure 1, the set of vertices V(G) is
{1,2,. . .,32}, and there are 32 directed edges, includ-
ing 6 → 7 and 17 → 23.

A path from vertex u to vertex v in G is an alter-
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nating sequence of vertices and edges of G, begin-
ning with u and ending with v, such that no vertex
is repeated and every edge joins the vertices imme-
diately preceding it and following it. A path p con-
necting u to v is denoted p = u, u1, u2, . . ., un, v,
where u1, u2, . . ., un is the sequence of other vertices
on the path. For example, 1 → 3 → 4 → 5 is a di-
rected path in the graph of Figure 1. The undirected
sequence 14—13—12—11—2—3—4—5 is a path in
the undirected version of this graph, but not in the
directed version. The two paths are denoted as p = 1,
3, 4, 5, and p = 14, 13, 12, 11, 2, 3, 4, 5, respectively.

A directed path p from u to v in a pedigree graph
traces one way that v receives genetic material from
u. The vertices on p are also a (partial) list of ances-
tors of v. Absence of a directed path from u to v
indicates that u is not an ancestor of v. Hence, there
is no way that v can receive genetic material from u;
for example, in Figure 1, person 28 does not receive
genetic material directly from person 6, although
they have a common ancestor.

A pedigree graph G connects a set of individuals
S if there is a vertex in V(G) for each individual in S,
and in the undirected version of the graph, there is a
path between each pair of vertices representing
people in S. The pedigree of Figure 1 is connected.
Geneticists usually use the term pedigree to mean a
set of parent–child relationships that induce a pedi-
gree graph whose undirected version is connected.
Therefore, any formal definition of pedigree construc-
tion should require that the output pedigree induce
a connected pedigree graph. However, this require-
ment does not specify the output pedigree uniquely,
and different specifications of pedigree construction
are useful for different purposes.

A cycle is a path that begins and ends at the same
vertex. If a graph has no cycles, it is called acyclic.
Any directed pedigree graph is acyclic, as the edges
are directed from parent to child, and it is biologi-
cally impossible to have a cycle in this setting. The
term loop is not used here because formally a loop in
a pedigree is a cycle in a more complicated, undi-
rected representation called a marriage graph (Lange
and Elston 1975). For example, a first-cousin mar-
riage with offspring leads to a loop in the undirected
marriage graph but not to a cycle in the directed
pedigree graph.

The length of a path is the number of edges in
the sequence defining the path; for example the
length of path p = u0, u1, u2, . . ., un is n. A path from
vertex u to vertex v is a shortest path if it has mini-
mum length of any path from u to v. The length of
a shortest path from u to v is also called the distance
d(u,v) from u to v.

A shortest path from u to v makes the fewest
assumptions about how an allele could have passed
from u to v. By the principle of parsimony, a hy-
pothesis that a disease-causing allele passed from u
to v requires consideration of all shortest paths from
u to v. This observation motivates the asp pedigree
construction query.

If G and H are graphs, then H is a subgraph of G
if and only if V(H) is a subset of V(G) and E(H) is a
subset of E(G).

Given a pedigree graph G that connects a set of
people S, it is sometimes useful to find a subgraph of
G that still connects S. One such situation is when
the pedigree graph has too many edges to be drawn
comprehensibly. A subgraph of G that contains
minimum number of vertices and connects S is
called a minimal subgraph, and the problem of find-
ing a minimal connected subgraph is called a Steiner
tree problem in the computer science literature.
Therefore, a minimal pedigree subgraph that con-
nects specified individuals is called a Steiner pedigree.
PedHunter finds Steiner pedigrees with the query
called minped. Steiner pedigrees are useful for draw-
ing and for linkage analysis when the pedigree
graph has too many edges. PedHunter’s method to
construct Steiner pedigrees and some background
from the computer science literature are explained
in the next section.

Steiner Pedigree

Steiner tree problems are widely studied due to ap-
plications such as designing road networks and VLSI
chips. A survey of Steiner tree problems can be
found in Hwang and Richards (1992). Many Steiner
tree problems are quite intractable computationally,
but pedigree graphs have special features that may
make the problem easier. Pedigree graphs are acy-
clic, and the vertices that must be included typically
represent children at the bottom generation. Such
vertices that have no outgoing edges are called ter-
minals. In a recent paper Zelikovsky (1997) studied
the Steiner tree problem for all directed acyclic
graphs with the constraint that the vertices to be
connected are terminals. This problem has applica-
tions outside genetics. Zelikovsky showed that this
version of the Steiner tree problem is intractable in
a formal sense and gave an approximation algorithm
for the problem. An approximation algorithm finds a
subgraph that contains all of the prescribed vertices
whose size is bounded relative to the size of the
minimal subgraph, where the size of a graph is the
number of vertices in the graph. However, both the
performance ratio and the computation time of this
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approximation algorithm grow exponentially with
the length of the longest path in the graph.

Instead of Zelikovsky’s approximation algo-
rithm, PedHunter uses an algorithm that finds an
exact smallest subgraph (subpedigree) as measured
by the number of vertices (individuals). The ap-
proximation algorithm may be inadequate for the
subsequent linkage analysis.

The exact algorithm applies a general technique
called branch and bound, which is commonly used to
explore exponential-size search spaces in intractable
search problems (Papdimitriou and Steiglitz 1982).
Branch and bound works well in problems where
one can quickly get to a good solution. The weight
of the known solution can be used to eliminate
many partial solutions whose weight is larger (for a
minimization problem such as Steiner tree). When a
partial solution is eliminated, all full solutions con-
taining that partial solution are implicitly elimi-
nated also. Branch refers to steps that expand the
current partial solution by branching in the search
space; bound refers to using a known solution as a
bound.

Branch and bound algorithms start by finding
an initial solution, keep track of the current best
solution, and probe other solutions until it is pos-
sible to determine that the current solution is at
least as good as any other solution. Branch and
bound algorithms typically use retracing or back-
tracking, which means that part of the current (par-
tial solution) is removed, and the algorithms pro-
ceed to consider other solutions that do not contain
the removed part. To describe a specific branch and
bound algorithm one must describe (1) What makes
one solution better than another? (2) How to find
an initial solution? (3) How to probe all solutions?
For the minimal pedigree problem, the algorithm
solves the three basic questions as follows.

Comparing Solutions

The number of edges in the solution is the measure
for comparing solutions and the solution with fewer
number of edges is better. The number of edges in a
solution is called the cost of the solution. The prob-
lem statement asks to minimize the number of ver-
tices, but any connected graph with no cycles that
has e edges, must have exactly e+1 vertices (Even
1979). Therefore, minimizing number of edges is
equivalent to minimizing number of vertices. The
algorithm transforms the initial Steiner problem
where all edges have weight 1 to a related problem
where edges may have larger weight. In the

weighted version, the cost of a solution is the sum of
weights of edges the solution contains.

Initial Solution

The steps for finding an initial solution are as fol-
lows:

1. Start with the specified set of individuals as the
vertices in the solution.

2. For each vertex v in the solution, except the root,
that is not connected to a parent, choose a parent
p that is present in the input graph. If the parent
chosen is not in the solution, add a vertex for p in
the solution. Add the edge p → v to the solution.

3. Repeat step 2 until there is only one vertex in the
solution that is not connected to a parent. That
vertex is the root of the pedigree.

Probing All Solutions

Every edge in the input graph G is either in the cur-
rent solution or it is out. The edges are numbered
1, . . .,|E(G)| such that edge u → v is preceded in the
order by all edges that are incoming into u. Such an
order is possible for pedigree graphs because they
are acyclic (Even 1979).

Consider the edges in order e = 1, 2, 3, . . . . Add
edge e to the current solution unless it (1) creates an
undirected cycle or (2) creates a (partial) solution
with higher cost than the current best. When the
current partial solution is a full solution (detectable
by testing whether number of edges equals number
of vertices minus 1), compare its cost to the current
best.

There are four cases that need to be specified
further.

1. If the current partial solution is a full solution
and it has lower cost than the previous best, re-
place the best solution and retrace decisions back
to the last edge added in. Omit that edge and
proceed to look for better solutions.

2. If the addition of e creates an undirected cycle,
then omit e and proceed to add more edges.

3. If the addition of e creates a partial solution with
higher cost than the current best full solution,
then as in case 1, retrace back to the last edge
added in. Omit that edge and proceed forward.

4. If the last edge was considered and the solution is
not full, then as in case 1, backtrack to the last
edge added in, omit it and proceed.

All solutions have been considered when retracing
returns all the way past edge 1.
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The worst-case computation time of the algo-
rithm is exponential in the number of edges in the
input graph. The computation time is lowered sub-
stantially by reducing the size of the graph to be
considered in the branch and bound algorithm. The
graph is reduced by three transformations that are
applied repeatedly in any order until none of them
can be applied:

1. Replace paths consisting of k + 1 vertices with
one incoming edge and one outgoing edge with
a single edge of cost k. This is valid because in the
original graph, either all k edges must be in-
cluded or excluded from a solution.

2. Delete unselected terminals with one incoming
edge. This is valid because they cannot serve to
connect the selected terminals.

3. Delete edge u → v if there is another path from u
to v. This is valid because the input graph is an all
shortest paths pedigree. Therefore, all paths from
u to v have the same cost. The vertices on the
multiple-edge path cannot lead to a worse solu-
tion than using the single edge u → v and might
lead to a better solution.

The first transformation introduces edges
whose weight is >1. The third transformation can
apply only after the first transformation has created
edges of weight >1 because the cost of all paths from
u to v is the same. The cost of a solution in the
transformed graph is the sum of costs of all edges in
the solution. The transformation is reversed to pro-
duce the output Steiner pedigree.
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