
stress conditions [1]. The transporter contributes to virulence of
pathogens such as Staphylococcus aureus and Helicobacter pylori. We
utilize PutP of Escherichia coli as a model to explore structure and
molecular mechanism of function of SSSF proteins.

Here, we present a model of the helix bundle of PutP obtained by
molecular modeling constrained by experimentally determined intra-
molecular distances and template restraints derived from the ten-
helix core of the vSGLT crystal structure [2]. For this purpose, DEER
distance measurements between spin labels attached to helix ends
were conducted and mean interspin distances were determined.
Fitting algorithm based on matrix geometry in combination with
prediction of spin label conformations by a rotamer library approach
[3] resulted in an ensemble of helix bundle structures. The central
structure of the ensemble showed a core structure with a fold similar
to that of the vSGLT template. Furthermore, analysis of spin label
motility and environmental polarity by cwEPR yielded information
on secondary structure elements and structural rearrangements of
external loop (eL) 9 of PutP upon sodium and/or l-proline binding.
The results support the idea that eL9 controls access to the sodium
and/or l-proline binding site(s) similar as previously proposed for eL
4 of LeuT [4].

References
[1] H. Jung, FEBS Lett. 529 (2002) 73–77.
[2] S. Faham, A. Watanabe, G.M. Besserer, D. Cascio, A. Specht, B.A.

Hirayama, E.M. Wright, J. Abramson, Science 321 (2008)
810–814.

[3] Y. Polyhach, E. Pordignon, G. Jeschke, Phys. Chem. Chem. Phys.
13 (2011) 2356–2366.

[4] D.P. Claxton, M. Quick, L. Shi, F.D. de Carvalho, H. Weinstein,
J.H. Javitch, H.S. McHaourab, Nat. Struct. Mol. Biol. 17 (2010)
822–829.

doi:10.1016/j.bbabio.2012.06.103

4P6

Mitochondrial carrier structure and diseases
Pierri Ciro Leonardo, Palmieri Ferdinando
Department of Biosciences, Biotechnology and Pharmacological Sciences,
Laboratory of Biochemistry and Molecular Biology, University of Bari,
Italy
E-mail: ciroleopierri@gmail.com

To date eleven disorders are known to be caused by defects of mito-
chondrial carriers, a family of proteins that shuttle a variety ofmetabolites
across the inner mitochondrial membrane. Mutations of mitochondrial
carrier genes are responsible for carnitine/acylcarnitine carrier deficien-
cy, ornithine carrier deficiency (HHH syndrome), aspartate/glutamate
isoform 1 deficiency (global cerebral hypomyelination), aspartate/
glutamate isoform 2 deficiency (CTLN2 andNICCD), Amishmicrocephaly,
early epileptic encephalopathy, congenital sideroblastic anemia, PiC defi-
ciency, ADP/ATP carrier isoform 1 deficiency, neuropathy with bilateral
striatal necrosis and adPEO (autosomal dominant progressive external
ophthalmoplegia). Structural, functional and bioinformatics studies have
revealed the existence in mitochondrial carriers of a substrate-binding
site in the internal carrier cavity, of two gates that close the cavity
alternatively on the matrix or cytosolic side of themembrane, and of two
sets of prolines and glycines in the six transmembrane a-helices located
strategically between the substrate-binding site and the two gates. The
key role played by these mitochondrial carrier areas is supported by
the observation that they host most of the disease-causing missense
mutations of the mitochondrial carriers.
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Na+/Ca2+ exchangers (NCX) and potassium-dependent Na+/
Ca2+ exchangers (NCKX) are two related families of transporters
involved in Ca2+ signaling that function by extruding cytosolic Ca2+

(and K+ for the potassium-dependent transporter) in exchange for
extracellular Na+ [1]. Previous studies have established that this
exchange process is electrogenic and with a defined stoichiometry,
and have identified specific acidic aminoacids believed to be crucial
for ion binding and translocation [1–3]. Recently the crystal structure
of the NCX from Methanococcus jannaschii was determined at 1.9 Å
resolution [4], revealing an intriguing transmembrane topology
consisting of inverted structural repeats, and the presence of four
putative ion binding sites formed by highly conserved residues.
Notwithstanding these groundbreaking insights, based on the struc-
ture alone several ion occupancy states can be hypothesized that
would be compatible with the experimental exchange stoichiometry.
Moreover, in the crystal the protein adopts a unique outward facing
conformation, which does not immediately explain how ion binding
to the protein facilitates the necessary outward-to-inward conforma-
tional transition. Here, we use extensive molecular simulations and
molecular modeling to investigate the occupancy and specificity of
the ion binding sites in NCX_Mj, and the microscopic mechanism by
which Na+ and Ca2+ are exchanged across the membrane.
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Membrane-integral pyrophosphatases (mPPases) are primary H+-
or Na+-ion pumps directly energized by pyrophosphate, an abundant
byproduct of anabolic reactions. mPPases are widespread in all
domains of life and provide the host necessary energy reserves,
particularly during stress and low-energy conditions. The enzyme
holds promise in biotechnology insofar as agricultural plants that
overexpress mPPase have salt- and drought-tolerant phenotypes.

Recent work has uncovered significant functional divergence
among members of the mPPase protein family. Notably, mPPases
differ in pumping specificity and sensitivity to K+ ions [1,2]. All K+-
independent mPPases operate as H+-pumps, whereas most K+-
dependent mPPases are primary Na+-pumps. However, several types
of K+-dependent, H+-pumping mPPases are known. One particular
mechanism that allows a change in transport specificity from Na+ to
H+ is spatial repositioning of a glutamate residue that forms part of
the cytoplasmic gate in the ion transport channel [3].

The reconstructed evolutionary history of mPPases suggests that
the ancestral enzyme operated as a Na+-pump and the transition to
H+-pumping occurred in several independent enzyme lineages [3].
These data lend support to the hypothesis of primordial Na+-based
membrane bioenergetics [4]. Na+- and H+-pumping mPPases are
structurally very similar [5], supporting the concept, first proposed
for a rotating ATP-synthase/ATPase, that switching between Na+ and
H+ transport specificities requires only subtle changes in structure
[4].

References
[1] G.A. Belogurov, R. Lahti, J. Biol. Chem. 277 (2002) 49651–49654.
[2] A.M. Malinen, G.A. Belogurov, A.A. Baykov, R. Lahti,

Biochemistry 46 (2007) 8872–8878.
[3] H.H. Luoto, G.A. Belogurov, A.A. Baykov, R. Lahti, A.M. Malinen,

J. Biol. Chem. 286 (2011) 21633–21642.
[4] A.Y. Mulkidjanian, M.Y. Galperin, K.S. Makarova, Y.I. Wolf, E.V.

Koonin, Biol. Direct 3 (2008) 13.
[5] S.M. Lin, J.Y. Tsai, C.D. Hsiao, Y.T. Huang, C.L. Chiu, M.H. Liu, J.Y.

Tung, T.H. Liu, R.L. Pan, Y.J. Sun, Nature 484 (2012) 399–403.

doi:10.1016/j.bbabio.2012.06.106

4P9

Characterization and purification of the multi subunit type
Na+/H+ antiporter from alkaliphilic Bacillus pseudofirmus OF4
Masato Morino1,2, Toshiharu Suzuki3, Masahiro Ito1
1Graduate School of Life Sciences, Toyo University, Oura-gun,
Gunma 374-0193 Japan
2Department of Pharmacology and Systems Therapeutics,
Mount Sinai School of Medicine, New York, NY 10029, USA
3JST ICORP ATP, Japan
E-mail: masahiro.ito@toyo.jp

Mrp antiporters are monovalent cation/proton antiporters which
exchange cytoplasmic Na+, Li+ and/or K+ ions for extracellular H+.
They are widespread among bacteria and archaea. Mrp antiporters
have seven or six hydrophobic proteins that are encoded in the mrp
operons, in contrast to most of bacterial Na+/H+ antiporters which
are single gene products. Interestingly, the entire Na+/H+ antiport
activity requires all of these proteins, suggesting that Mrp antiporters
function as a hetero-oligomeric protein complex in the cytoplasmic
membrane. Purification and functional reconstitution of the Mrp

antiporter have not been reported. Therefore, we purified and recon-
stituted the Mrp antiporter from alkaliphilic Bacillus pseudofirmus
OF4, because purification of target proteins and their complex with
the native conformation is required for further functional and struc-
tural research. The Mrp antiporter expressed in major Cation/H+

antiporter-defective Escherichia coli strain KNabc cells was purified
by immobilized metal ion adsorption chromatography (IMAC).
The purified Mrp samples were reconstituted into artificial mem-
brane vesicles (liposomes) with FoF1-ATPase from Bacillus sp. PS3
as the “power supply” to generate a proton motive force required
for activation of the Mrp antiporter. The Na+/H+ antiport activity
of the purified Mrp antiporter was measured in the constructed
proteoliposomes (protein-inserted liposomes). Using TALON resin, all
of the Mrp subunits could be purified from the E. coli membrane
fraction expressing the Mrp antiporter and seemed to be present as
predominantly a MrpABCDEFG complex dimer. Apparent Na+/H+

antiport activity was observed in the proteoliposomes into which
purified Mrp and FoF1-ATPase were reconstituted. After elution of
Mrp proteins, they remained as Mrp complexes and most of which
were present as the MrpABCDEFG complex dimer. This suggested that
MrpABCDEFG complexes detectable by BN-PAGE are the active forms.
It was also speculated that the Mrp complex dimer is more stable
than the complex monomer. This is the first report of the purification
and functional reconstitution of a Mrp antiporter.
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The eukaryotic vacuolar ATPase (V-ATPase) is a rotary molecular
motor and dedicated proton pump found on the endomembrane
system of all eukaryotic cells and the plasmamembrane of specialized
cells in higher organisms [1]. The enzyme is composed of a soluble
catalytic subcomplex (V1) and a membrane integral complex (Vo)
involved in proton translocation. Linking the soluble and membrane
sectors are the stator subunits (E, G, C, H and aNT) which absorb
the torque generated during rotary catalysis. The unique mode of
V-ATPase regulation, known as reversible dissociation, involves the
release of V1-ATPase from the membrane integral Vo, and the activity
of both domains is silenced [2]. Regulated release of V1-ATPase
requires breaking of protein interactions mediated by three periph-
eral stalks, each composed of a heterodimer of subunits E and G. Two
of the peripheral stalks (EG1 and EG2) connect the top of the V1 to
the membrane bound a subunit while the third (EG3) is bound to
subunit C, which is released from both V1 and Vo during enzyme
dissociation. We have previously characterized and quantified the
affinities of some of these interactions and have found that the globular
“head” domain of subunit C (Chead) binds to one EG heterodimer with
high affinity [3,4].

Here, we present X-ray crystal structures of two conformations of
the EGChead complex from Saccharomyces cerevisiae at 2.91 and 2.82 Å

AbstractsS36

http://dx.doi.org/10.1016/j.bbabio.2012.06.106
http://dx.doi.org/10.1016/j.bbabio.2012.06.107

