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OBJECTIVE—Linkage of the chromosome 1q21–25 region to
type 2 diabetes has been demonstrated in multiple ethnic groups.
We performed common variant fine-mapping across a 23-Mb
interval in a multiethnic sample to search for variants responsi-
ble for this linkage signal.

RESEARCH DESIGN AND METHODS—In all, 5,290 single
nucleotide polymorphisms (SNPs) were successfully genotyped
in 3,179 type 2 diabetes case and control subjects from eight
populations with evidence of 1q linkage. Samples were ascer-
tained using strategies designed to enhance power to detect
variants causal for 1q linkage. After imputation, we estimate
�80% coverage of common variation across the region (r2 � 0.8,

Europeans). Association signals of interest were evaluated
through in silico replication and de novo genotyping in �8,500
case subjects and 12,400 control subjects.

RESULTS—Association mapping of the 23-Mb region identified
two strong signals, both of which were restricted to the subset of
European-descent samples. The first mapped to the NOS1AP
(CAPON) gene region (lead SNP: rs7538490, odds ratio 1.38 [95%
CI 1.21–1.57], P � 1.4 � 10�6, in 999 case subjects and 1,190
control subjects); the second mapped within an extensive region
of linkage disequilibrium that includes the ASH1L and PKLR
genes (lead SNP: rs11264371, odds ratio 1.48 [1.18–1.76], P �
1.0 � 10�5, under a dominant model). However, there was no
evidence for association at either signal on replication, and,
across all data (�24,000 subjects), there was no indication that
these variants were causally related to type 2 diabetes status.

CONCLUSIONS—Detailed fine-mapping of the 23-Mb region of
replicated linkage has failed to identify common variant signals
contributing to the observed signal. Future studies should focus
on identification of causal alleles of lower frequency and higher
penetrance. Diabetes 58:1704–1709, 2009

G
enome-wide association (GWA) analysis has
provided a powerful stimulus to the discovery
of common variants influencing type 2 diabetes
risk, and, to date, �20 susceptibility loci have

been identified with high levels of statistical confidence
(1). However, these known variants account for only a
small proportion of the inherited component of disease
risk (probably �10%), and the molecular basis of the
majority of the genetic predisposition to type 2 diabetes
has yet to be established (1).

The success of the GWA approach contrasts with the
slow progress that characterized previous efforts to map
susceptibility loci through genome-wide linkage (2). How-
ever, now that many of the common variants of largest
effect have been identified (in European-descent popula-
tions at least), there are cogent reasons to revisit regions
previously identified through genome-wide linkage. First,
variants within the genomic intervals representing repli-
cated linkage signals can be considered to have raised
prior odds for a susceptibility effect, and this information
can be used to prioritize GWA signals (particularly those
with only modest evidence of association) for targeted
replication. Second, genuine linkage signals are likely to
be driven by causal variants—particularly low-frequency
SNPs or copy number variants not captured by the com-
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modity GWA arrays—with effect sizes larger than those
currently detectable by GWA (3). Because alleles with
these characteristics will have a more marked impact on
individual disease predisposition than the common vari-
ants found by GWA, identification of causal variants
underpinning replicated linkage signals should accelerate
efforts to obtain better predictors of disease (4).

For type 2 diabetes, there appears to be only limited
overlap between the regions identified by genome-wide
linkage and those revealed by GWA (5). Although the
discovery of TCF7L2 was prompted by a search for causal
variants within a region of replicated type 2 diabetes
linkage, neither the common variants in TCF7L2 nor those
in HHEX and IDE (a second nearby GWA signal) account
for that linkage signal (6). Thus, the discovery of TCF7L2
reflects either serendipity or the co-localization of com-
mon and rare causal variants in the same locus—the
former driving the association and the latter the linkage.
Similarly, whereas common variants in HNF4A have been
reported to explain the chromosome 20 linkage signals
seen in Finns and Ashkenazim (7,8), these associations
have proved difficult to replicate (9).

Chromosome 1q (in particular the 30-Mb stretch adja-
cent to the centromere) ranks alongside the regions on
chromosomes 10 and 20 as among the strongest in terms
of the replicated evidence for genome-wide linkage to type
2 diabetes. Linkage has been reported in samples of
European (U.K., French, Amish, Utah), East Asian (Chi-
nese, Hong Kong), and Native American (Pima) origin
(summarized in Supplementary Table 1, which is available
in the online-only appendix at http://diabetes.diabetes
journals.org/cgi/content/full/db09-0081/DC1; ref. 2). The
region concerned is gene rich and contains a dispropor-
tionate share of excellent biological candidates (2). The
homologous region has also emerged as a diabetes sus-
ceptibility locus from mapping efforts in several well-
characterized rodent models (10–13).

The International 1q Consortium represents a coordi-
nated effort by the groups with the strongest evidence for
1q linkage to identify variants causal for that signal. Here,
we report efforts to map causal variants using a custom
linkage-disequilibrium (LD) mapping approach, predomi-
nantly based around common SNP variants, applied to a
well-powered set of multiethnic samples.

To improve power, ascertainment of type 2 diabetes
cases for this study aimed to enrich for 1q causal alleles
through 1) a focus on populations and samples that had
shown 1q linkage; 2) selection for positive family history;
and 3) for some samples, preferential recruitment on the
basis of patterns of identity by descent sharing in the 1q
region. For each set of case subjects, we selected a control
sample of individuals from the same population. Details of
the recruitment have been reported previously (14) and
are summarized in the supplementary material available in
the online appendix. In all, the case-control part of the
study included 2,198 samples (1,000 case subjects, 1,198
control subjects) of European descent, 281 (140 case
subjects, 141 control subjects) of East Asian origin, and
285 (144 case subjects, 141 control subjects) who were
Native American (Pima) (supplementary Table 2). We also
included a small sample of individuals of African American
origin (242 case subjects, 173 control subjects) and an
additional 599 Pima individuals (520 affected, 79 nondia-
betic after age 45 years) from 255 families who, after
combination with the Pima case-control set, were used for
family-based association analyses.

These samples were submitted to dense-map SNP typing
of the core region of interest (from 147.0 to 169.7 Mb
[Build 35]) using a series of 1,536-plex BeadArray designs
(Golden Gate, Illumina, San Diego, CA). Design of these
arrays was contemporaneous with development of dbSNP
and HapMap (15). Thus, whereas the first arrays were
LD-agnostic and compiled using genomic localization as
the primary consideration for inclusion, subsequent arrays
used LD information from the CEU (European ancestry)
and CHB/JPT (Asian ancestry) components of HapMap to
guide SNP selection and maximize coverage of the region.
In all, we designed assays for 6,023 SNPs, of which 5,290
provided reliable data in all populations after passing
through our extensive quality control (see the supplemen-
tary material). We estimate that after imputation (using
the appropriate set of HapMap data as a reference),
coverage of the region (minor allele frequency �0.05; r2 �
0.8) reaches �80% in the European and �72% in the East
Asian samples. Coverage is harder to estimate (and impu-
tation likely to be less valuable) in Pima and African
American samples, since reference data from these popu-
lations are not available, although we estimate �49%
coverage in West Africans based on YRI data.

Genotyping quality was generally good, with over 91%
of SNPs passing quality control in each population (see
the supplementary material) and �0.45% of SNPs failing
(P � 10�4) tests of within-sample Hardy-Weinberg equi-
librium. Significant departures from expectation in the
distributions of test statistics observed in the Amish and
Pima samples (as revealed by QQ plots; see supplemen-
tary material) likely reflect residual relatedness between
subjects from those populations. We adjusted for this
(and any population stratification effects) through
genomic control methods (16). Association analyses
treated each study as a separate stratum and used
standard meta-analysis approaches to deliver estimates
of joint effect size and statistical significance (see
supplementary material). A series of nested meta-anal-
yses were performed including 1) European-descent
samples only (“4-way”); 2) non–African-descent samples
only (“7-way”); and 3) all samples (“8-way”).

Under an additive model with allele frequency of 0.25,
our sample provides �80% power to detect per-allele odds
ratios (ORs) of �1.36 (“8-way”) or �1.43 (“4-way”) for � �
5 � 10�6. Given that the region covers �1% of the genome,
we consider this a reasonable benchmark for “region-
wide” significance (equivalent to consensus genome-wide
thresholds of 5 � 10�8). These power calculations are
conservative: given the case ascertainment enrichment
strategies used in this study, we would expect to detect
variants with population-level effects in the 1.2–1.3 range.
Under reasonable assumptions (three independent alleles
contributing to a linkage signal with a locus-specific
sibling relative risk of �1.15), we can expect the effect size
of the variants we were seeking to detect (i.e., those
responsible for the 1q linkage) to be substantially greater
than this (e.g., allelic OR 1.6 for a variant with risk allele
frequency of 25%). Our study was therefore well powered
to detect putatively causal alleles within the European
and/or combined datasets.

Across these analyses, none of the SNPs showed an
association with type 2 diabetes that withstood genome-
wide correction (P � 5 � 10�8) (17). However, two
clusters of SNPs showed association signals that ap-
proached or exceeded “region-wide” significance thresh-
olds. The first of these, involving rs7538490 and nearby
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SNPs, mapped to a 51.4-kb interval (at �160.35 Mb) within
the first intron of NOS1AP (nitric oxide synthase 1 [neu-
ronal] adaptor protein) with an estimated per allele OR (in

the 4-way, European-only analysis) of 1.38 (95% CI 1.21–
1.57, P � 1.4 � 10�6, additive model, Table 1, Fig. 1).
Rs7538490 lies �5.6 kb from one of the SNPs (rs10494366)

TABLE 1
Association results for rs7538490 in the NOS1AP gene

Case
subjects (n)

Control
subjects (n)

Risk allele
frequency

in case
subjects

Risk allele
frequency
in control
subjects

Additive model

OR (95% CI) P

U.K. 443 443 0.31 0.24 1.38 (1.13–1.69) 1.6 � 10�3

French 219 239 0.34 0.29 1.21 (0.92–1.60) 0.16
Utah 190 161 0.30 0.20 1.68 (1.19–2.36) 2.7 � 10�3

Amish* 147 347 0.43 0.36 1.36 (0.97–1.91) 0.071

Meta-analysis: 4 European descent
populations 999 1,190 1.38 (1.21–1.57) 1.4 � 10�6

Shanghai 77 77 0.44 0.42 1.11 (0.71–1.72) 0.66
Hong Kong 63 64 0.57 0.55 1.10 (0.68–1.78) 0.70
Pima* 144 141 0.46 0.44 1.09 (0.76–1.57) 0.62

Meta-analysis: 7 non-African populations 1,283 1,472 1.31 (1.17–1.46) 4.3 � 10�6

African American 242 173 0.25 0.28 0.86 (0.62–1.19) 0.37

Meta-analysis: 8 1qC populations 1,525 1,645 1.24 (1.12–1.39) 5.4 � 10�5

Replication samples
Independent WTCCC sample 1,495 2,938 0.29 0.29 0.97 (0.88–1.07) 0.57
W2C vs. 58BC 472 1,992 0.27 0.27 1.00 (0.85–1.17) 0.93
UKT2DGC 3,932 4,818 0.29 0.28 1.03 (0.97–1.10) 0.18
Diabetes Genetics Initiative 1,464 1,467 0.26 0.26 1.01 (0.87–1.16) 0.82
FUSION 1,161 1,174 0.30 0.27 1.13 (0.97–1.29) 0.063

Meta-analysis: all replication samples 8,524 12,389 1.03 (0.98–1.07) 0.29
Meta-analysis: all European descent

populations 9,523 13,579 1.06 (1.01–1.10) 0.014
Meta-analysis: all data 10,049 14,034 1.05 (1.01–1.10) 0.015

*P value for Amish and Pima was adjusted using estimated lambda for genomic control. WTCCC, Wellcome Trust Case Control Consortium.

FIG. 1. Single-point type 2 diabetes associations within the 1q region. This plot shows the “4-way” (European-descent samples only)
meta-analysis using the additive model (Cochran-Armitage trend test). Directly typed SNPs are shown in orange and imputed SNPs in blue. The
pale blue track (and secondary y-axis) represents recombination rates (for HapMap CEU) across the region. Blue diamonds represent the
strongest association P value in the two regions taken forward for replication. In the case of the PKLR/ASH1L region, the strongest association
was seen for a dominant model (the equivalent additive model result is denoted with the red diamond). Only a small subset of genes within the
region is denoted on the gene track.
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previously shown to influence cardiac repolarization and
QT interval (18): the two SNPs are in modest LD (r2 � 0.47
in HapMap CEU), and rs10494366 shows some evidence
for association with type 2 diabetes (P � 3.1 � 10�4) in the
same 4-way meta-analysis.

The second signal includes �10 SNPs in a 220-kb region
of extensive LD at �152.1 Mb. This region includes the
coding sequences of the genes encoding liver pyruvate
kinase (PKLR) and ash1 (absent, small, or homeotic)-like
(Drosophila) (ASH1L) among others. At the lead SNP
(rs11264371), the estimated OR for the 4-way analysis was
1.36 (1.18–1.58) (P � 3.5 � 10�5) under the additive
model. The effect size and significance were marginally
greater (1.48 [1.18–1.76], P � 1.0 � 10�5), under a domi-
nant model (Table 2, Fig. 1).

Both signals were most prominent in the European
samples, and there was no evidence that an equivalent
association signal extended to the East Asian, Native
American, or African American samples. Though the asso-
ciation P values for these two signals remained strong in
the 8-way meta-analysis of all data (5.4 � 10�5 for
rs7538490 and 2.9 � 10�4 for rs11264371, Tables 1 and 2),
in each case they were driven by the larger European
samples. Analyses in the larger Pima family-based associ-
ation dataset also found no evidence of association
(rs7538490, P � 0.59; rs11264372 [r2 of one with
rs11264371 in CEU and CHB/JPT HapMap], P � 0.79).

Although neither signal was of sufficient effect size to
be considered causal for the 1q linkage signal (the
estimated sibling relative risk attributable to these loci

in combination is only 1.045), we reasoned that these
signals might nevertheless be pointers toward nearby
causal variants (of lower frequency but higher pen-
etrance) that were inadequately tagged by the SNPs we
had typed. However, before proceeding to resequencing
and fine-mapping, we first sought replication of our
findings in independent datasets. Mindful that our case
ascertainment strategies may have led to inflated esti-
mates of effect size compared with those evident in
unselected case subjects, we recognized that large
sample sizes would be required to test the observed
associations. Because the signals were clearest in European-
descent samples, we focused replication on samples from
Northern Europe.

First, we used GWA data from the Wellcome Trust Case
Control Consortium (19,20). After removing 429 overlap-
ping case subjects, we examined 1,495 additional type 2
diabetes case subjects and 2,938 control subjects with
Affymetrix 500k data (using imputation to test for associ-
ation at the lead SNPs in each interval). No evidence of
association was evident (rs7538490, P � 0.57; rs11264371,
P � 0.33). Similarly, analysis of GWA data from the
Diabetes Genetics Initiative (21) and FUSION (22) studies
provided no corroboration of either signal. Furthermore,
when analyzed jointly (4,549 case subjects, 5,579 control
subjects), these three studies also failed to reveal any
additional common variant signals of interest (P � 10�4)
across the wider 1q region (23) and no corroboration
of any of the lesser signals evident in the 1q consortium
analyses.

TABL 2
Association results for rs11264371 in the PKLR/ASH1L region

Case
subjects (n)

Control
subjects (n)

Risk allele
frequency

in case
subjects

Risk allele
frequency
in control
subjects

Additive model

OR (95% CI) P*

U.K. 444 443 0.25 0.20 1.33 (1.07–1.66) 0.012
French 219 244 0.25 0.23 1.17 (0.86–1.59) 0.32
Utah 190 162 0.26 0.21 1.34 (0.94–1.92) 0.095
Amish* 147 349 0.25 0.17 1.83 (1.19–2.81) 5.8 � 10�3

Meta-analysis: 4 European descent
populations 1,000 1,198 1.36 (1.18–1.58) 3.5 � 10�5

Shanghai 77 77 0.77 0.70 1.47 (0.87–2.49) 0.15
Hong Kong 63 63 0.66 0.73 0.73 (0.42–1.23) 0.24
Pima* 144 141 0.58 0.60 0.91 (0.64–1.29) 0.64

Meta-analysis: 7 non-African populations 1,284 1,479 1.24 (1.10–1.42) 5.6 � 10�4

African American 242 173 0.37 0.34 1.18 (0.88–1.58) 0.25

Meta-analysis: 8 1qC populations 1,526 1,652 1.24 (1.10–1.39) 2.9 � 10�4

Replication samples
Independent WTCCC sample 1,495 2,938 0.24 0.24 1.05 (0.95–1.17) 0.33
W2C vs. 58BC 486 1,992 0.25 0.24 1.01 (0.86–1.19) 0.56
UKT2DGC 3,922 4,819 0.24 0.24 1.04 (0.98–1.12) 0.38
Diabetes Genetics Initiative 1,464 1,467 0.26 0.27 0.97(0.84–1.12) 1.00
FUSION 1,161 1,174 0.25 0.27 0.90 (0.78–1.03) 0.60

Meta-analysis: all replication samples 8,528 12,390 1.02 (0.97–1.06) 0.54
Meta-analysis: all European descent

populations 9,528 13,588 1.04 (1.00–1.09) 0.083
Meta-analysis: all data 10,054 14,042 1.04 (1.00–1.09) 0.069

*P value for Amish and Pima was adjusted using estimated lambda for GC. 58 BC, 1958 British Birth Cohort; UKT2DGC, United Kingdom Type
2 Diabetes Genetics Consortium; W2C, Warren 2 cases; WTCCC, Wellcome Trust Case Control Consortium.
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Finally, we genotyped the two lead SNPs (rs7538490,
rs11264371) using fluorogenic 5�-nuclease (Taqman) as-
says in 4,572 case subjects and 6,941 control subjects from
the U.K. (the UK Type 2 Diabetes Genetics Consortium
and Warren 2 cases/1958 British Birth Cohort strata in
Tables 1 and 2). Once again, there was no evidence of
replication. Taking into account all replication samples
(�8,500 case subjects, �12,400 control subjects), there
was no significant association with type 2 diabetes
(rs7538490, OR 1.03 [95% CI 0.98–1.07], P � 0.29;
rs11264371, OR 1.02 [0.97–1.06], P � 0.54 [additive], 1.06
[0.99–1.13], P � 0.10 [dominant]). Nominal significance
was retained when these replication data were combined
with the original 1q consortium case-control data
(rs7538490, P � 0.015; rs11264371, P � 0.069), but these
associations are unimpressive in either the region-wide or
genome-wide context. Even allowing for some heteroge-
neity of effect size between the primary and replication
datasets (due to ascertainment differences and the “win-
ner’s curse”), there seems to be no substantive evidence
that the association signals observed in the NOS1AP and
the PKLR/ASH1L region are genuinely associated with
type 2 diabetes.

In summary, we have undertaken a detailed survey of
common variants across the region of replicated 1q link-
age, achieving coverage that exceeds that of available
GWA data for the region. Despite analysis of multiple
ethnic groups in samples sufficiently powered (in the
European-descent component at least) to have detected
common variants causal for the linkage, we found no
compelling signals.

Should we conclude therefore that the original evi-
dence for 1q linkage was false? Although this possibility
cannot be discounted, it is worth considering that
recent experience from GWA studies has shown that,
for common susceptibility variants at least, effect sizes
are modest and that none is of magnitude sufficient to
generate a linkage signal detectable in achievable sam-
ple sizes. Efforts to explain the “missing heritability” for
type 2 diabetes (that is, the disparity between the
predisposition attributable to the known loci and inde-
pendent estimates of overall heritability and familiality)
are now shifting toward the search for low-frequency,
medium-penetrance alleles. Alleles with these charac-
teristics are likely to have escaped detection through
the genome-wide approaches available so far, since they
would be insufficiently penetrant to be detected with
traditional linkage approaches applied to monogenic
families and too infrequent to be reliably identified
through GWA studies (4). Yet, low-frequency, medium-
penetrance alleles could, particularly if several indepen-
dent alleles map to the same locus, generate the kinds of
linkage signals detectable in family-based studies (as is
the case for NOD2/CARD15 and Crohn’s, for example)
(24).

Detection of low-frequency susceptibility variants will
require new approaches based around next-generation
resequencing and large-scale fine-mapping. Genome-wide
resequencing of large case-control samples remains eco-
nomically and logistically unfeasible, but targeted rese-
quencing of selected regions is not, and the future plans of
the 1q consortium include deep resequencing of the 1q
region of interest, focusing at least initially on exons and
conserved sequence.
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