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Germline mutations in fundamental epigenetic regulatory molecules including DNA methyltransferase 3 alpha (DNMT3A)
are commonly associated with growth disorders, whereas somatic mutations are often associated with malignancy. We pro-

filed genome-wide DNAmethylation patterns in DNMT3A c.2312G>A; p.(Arg771Gln) carriers in a large Amish sibship with

Tatton-Brown–Rahman syndrome (TBRS), their mosaic father, and 15 TBRS patients with distinct pathogenic de novo

DNMT3A variants. This defined widespread DNA hypomethylation at specific genomic sites enriched at locations annotated

as genes involved in morphogenesis, development, differentiation, and malignancy predisposition pathways. TBRS patients

also displayed highly accelerated DNA methylation aging. These findings were most marked in a carrier of the AML-asso-

ciated driver mutation p.Arg882Cys. Our studies additionally defined phenotype-related accelerated and decelerated epi-

genetic aging in two histone methyltransferase disorders: NSD1 Sotos syndrome overgrowth disorder and KMT2D Kabuki

syndrome growth impairment. Together, our findings provide fundamental new insights into aberrant epigenetic mecha-

nisms, the role of epigenetic machinery maintenance, and determinants of biological aging in these growth disorders.

[Supplemental material is available for this article.]

DNA methylation is an essential epigenetic process involving the
addition of a methyl group to cytosine. It is known to play a role

in many important genomic regulatory processes, including
X-Chromosome inactivation, genomic imprinting, and the repres-
sion of tumor suppressor genes in cancer,mediating transcription-
al regulation as well as genomic stability (Jones 2012). Three
catalytically active DNAmethyltransferases (DNMTs) are involved
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in the methylation of cytosine: DNMT1, which is mainly respon-
sible for the maintenance of DNA methylation over replication,
and DNMT3A and DNMT3B, which generally perform de novo
methylation of either unmethylated or hemimethylated DNA.
An absence of these enzymes in mice results in embryonic
(DNMT1 and 3B) or postnatal (DNMT3A) lethality (Okano et al.
1999), confirming their essential roles in development. In line
with knockout mouse models, pathogenic variants affecting the
chromatin binding domains of DNMT1 have been shown to cause
two separate progressive autosomal dominant adult-onset neuro-
logic disorders (Klein et al. 2011). Biallelic pathogenic variants in
DNMT3B have been associated with immunodeficiency, centro-
mere instability, and facial anomalies (ICF) syndrome (Jiang
et al. 2005). To date, DNMT3A has been linked to a number of
physiological functions, including cellular differentiation, malig-
nant disease, cardiac disease, learning, and memory formation.
Somatically acquired pathogenic variants inDNMT3A are associat-
edwith >20%of acutemyeloid leukemia (AML) cases, whereas het-
erozygous germline pathogenic loss-of-function variants have
been found to underlie Tatton-Brown–Rahman syndrome (TBRS;
also known as DNMT3A-overgrowth syndrome, OMIM 615879)
(Challen et al. 2011; Tatton-Brown et al. 2014). TBRS is character-
ized by increased growth, intellectual disability (ID), and dysmor-
phic facial features. More recently, heterozygous gain-of-function
DNMT3A missense variants affecting the DNMT3A PWWP
domain have been shown to cause microcephalic dwarfism and
hypermethylation of Polycomb-regulated regions (Heyn et al.
2019).

There is an emerging group of epigenetic regulatory mole-
cule-associated human growth disorders in which the underlying
molecular defect is a disruption to the DNA methylation and his-
tonemachinery. There are now over 40 disorders identified within
this group, which can be further subgrouped into diseases result-
ing from disruption of the “writers,” “readers,” and “erasers” of
epigenetic modifications (Bjornsson 2015). Example disorders in
each group include Kabuki, Sotos, and Weaver syndromes (“writ-
ers”); Smith-Magenis, Rett, and Bohring–Opitz syndromes (“read-
ers”); andWilson–Turner and Cleas–Jensen syndromes (“erasers”).
The final subgroup occurs because of disruption of chromatin
remodelers, with example resulting disorders including CHARGE
and Floating–Harbor syndromes. Neurological and cognitive
impairment are common features of these conditions, suggesting
that precise epigenetic regulation may be critical for neuronal
homeostasis. However, a true understanding of the pathogenic
mechanism underlying these conditions remains poorly
understood.

In the current study, we investigated the methylomic conse-
quences of a DNMT3A pathogenic variant (NC_000002.12:
g.25240312C>T; NM_022552.4:c.2312G>A; p.(Arg771Gln)) in
a large Amish family comprising four individuals affected with
TBRS arising as a result of a mosaic pathogenic DNMT3A variant
in their father (Xin et al. 2017). The occurrence ofmultiple affected
and unaffected individuals in the same sibship, together with the
combined genetic and environmental homogeneity of the Amish,
permitted an in-depth investigation of the genome-wide patterns
of DNA methylation associated with pathogenic variation in
DNMT3A. We subsequently extended our analyses to other
(non-Amish) TBRS patients harboring distinct pathogenic de
novo DNMT3A variants, as well other methyltransferase-associat-
ed overgrowth and growth deficiency syndromes, defining altered
epigenetic profiles as common key themes of these growth
disorders.

Results

Reduced DNA methylation at key sites involved in

morphogenesis, development, and differentiation in TBRS

patients

DNMT3A encodes a DNMT with both de novo and maintenance
activity (Okano et al. 1999; Chen et al. 2003). We first looked for
global changes in DNA methylation in whole blood obtained
from DNMT3A c.2312G>A; p.(Arg771Gln) carriers, using the
methylation-sensitive restriction enzyme–based luminometric
methylation assay (LUMA) (Karimi et al. 2006) to quantify DNA
methylation across GC-rich regions of the genome, finding no ev-
idence for altered global DNA methylation (LUMA: mean
DNMT3A c.2312G>A carriers = 0.274, wild type=0.256, t-test P-
value =0.728). We next quantified DNA methylation at 414,172
autosomal sites across the genome using the Illumina 450K array.
Globally, a subtle decrease inmeanDNAmethylationwas noted in
available age/sex-matched DNMT3A heterozygous c.2312G>A;
p.(Arg771Gln) individuals compared with their matched unaffect-
ed sibling samples, although this was not statistically significant
(Wilcoxon rank-sum test P-values for two matched pairs = 0.24
and 0.14) (Supplemental Fig. S1). In contrast, an analysis of site-
specific DNA methylation differences in DNMT3A c.2312G>A;
p.(Arg771Gln) carriers (including the mosaic father) versus wild-
type individuals in the Amish pedigree identified 2606 differen-
tially methylated positions (DMPs; Benjamini–Hochberg false
discovery rate [FDR] < 0.05) (Fig. 1A,B; Supplemental Table S1), of
which 1776 DMPs were characterized by a >10% change in DNA
methylation. Supplemental Figure S2 also highlights DNAmethyl-
ation levels at these DMPs across all carriers and control individu-
als profiled in this study. Technical validation of Illumina 450K
array data was performed using bisulfite pyrosequencing for three
top-ranking DMPs, confirming significant differences inDNMT3A
c.2312G > A; p.(Arg771Gln) carriers at each of the tested loci
(Supplemental Fig. S3).

The DMPs identified were highly enriched for sites character-
ized by reduced DNA methylation in DNMT3A c.2312G>A;
p.(Arg771Gln) heterozygotes (n =2576 DMPs, 98.85%, sign-test
P-value <2.2×10−16). Although there were no statistically signifi-
cant differences between DNAmethylation-based blood cell com-
position estimates derived from our data (Supplemental Table S2),
we examined the extent to which the identified DMPs were poten-
tially influenced by cell-type differences between DNMT3A
c.2312G>A; p.(Arg771Gln) carriers and wild-type family mem-
bers. There was a highly significant correlation (r=0.876, P-value
<2.2 ×10−16) (Supplemental Fig. S4) in effect sizes at the 2606
DMPs between models, including and excluding cell types as co-
variates, indicating that the observed patterns of differential
DNA methylation are not strongly influenced by cell-type varia-
tion.We usedDMRcate (Peters et al. 2015) to identify spatially cor-
related regions of differential DNA methylation significantly
associated with the DNMT3A c.2312G>A; p.(Arg771Gln) variant,
identifying 388 autosomal differentially methylated regions
(DMRs) (for an example DMR, see Supplemental Fig. S5), all
characterized by hypomethylation in DNMT3A c.2312G>A;
p.(Arg771Gln) carriers apart from one 739-bp DMR that showed
increased DNA methylation (Supplemental Table S3). The mean
size of the identified DMRs was 625 bp (range =6–5522 bp), span-
ning an average of six probes (Supplemental Fig. S6).

We next investigated whether DNMT3A p.(Arg771Gln)-asso-
ciatedDMPs are enriched in specific genic locations (seeMethods).
We found a modest enrichment of DMPs in regions ≥1500 bp
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upstreamof the transcriptional start site (chi-squaredYates-correct-
ed P-value=0.047) and more prominent enrichment in intergenic
regions (chi-squared Yates corrected P-value =1.54×10−14) (Sup-
plemental Fig. S7).DMPswere also significantlyenriched inCpGis-

land shore regions (chi-squared Yates-corrected P-value =8×10−30)
(Supplemental Fig. S7). We also examined DMP occurrence in ex-
perimentally determined cancer and reprogramming-specific
DMR locations (Doi et al. 2009), finding a 2.4-fold and

B

A

C

D E

Figure 1. TBRSDNMT3A variants are associatedwith widespreadDNA hypomethylation. (A) Simplified pedigree indicating the genotyping of individuals
in the Amish family investigated: (+/−) heterozygous carriers of the DNMT3A c.2312G>A p.(Arg771Gln) variant; (+/−Mosaic) the DNMT3A c.2312G>A
p.(Arg771Gln) mosaic father; (−/−) wild-type individuals. Black shading indicates individuals with a phenotype consistent with TBRS, gray shading, the
father with macrocephaly and mild intellectual impairment; and white shading, unaffected individuals. Each of these samples was profiled on the
Illumina 450K DNA methylation array. (B) Volcano plot showing site-specific DNA methylation differences (x-axis) and −log10 P-values (y-axis) from an
analysis comparing Amish DNMT3A c.2312G>A; p.(Arg771Gln) pathogenic variant carriers and wild-type family members using the Illumina 450K array.
Red values indicate the 2606 differentially methylated positions (DMPs) detected at a Benjamini–Hochberg FDR<0.05. (C) Top 20 Gene Ontology enrich-
ment analysis categories associated with the 2606 DMPs identified in DNMT3A c.2312G>A; p.(Arg771Gln) pathogenic variant carriers versus wild-type
family members. (D) Comparison of DNMT3A c.2312G>A; p.(Arg771Gln) identified DMPs (log2 fold change) relative to other DNMT3A TBRS-associated
variants assessed in this study (all variants grouped and measured relative to controls). Pearson correlation coefficient = 0.6620, P-value <2.2 ×10−16. (E)
Boxplot illustrating the DNA methylation changes observed in association with the DNMT3A TBRS variants studied at the DMPs identified in the Amish
DNMT3A c.2312G>A p.(Arg771Gln) carriers. The predicted protein consequence of each DNMT3A variant studied is indicated: Pink indicates in-frame
deletion; yellow, single-nucleotide variant; cyan, duplications predicted to result in a frameshift; green, Amish c.2312G>A; p.(Arg771Gln) variant.
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4.7-fold overrepresentation (chi-squared Yates-corrected P-value=
4.24×10−6 and chi-squared Yates-corrected P-value <1.3 ×10−41,
respectively), as well as predicted enhancer elements that showed
a 1.4-fold overrepresentation (chi-squared Yates-corrected P-value
=7.57×10−16). We then undertook Gene Ontology analysis, ac-
counting for thebackgrounddistributionofprobes on the Illumina
450K array, to functionally annotate the DNA methylation
differences observed in the DNMT3A c.2312G>A; p.(Arg771Gln)
carriers. The 2606 DMPs identified in this study showed a
significant overrepresentation in functional pathways related
to morphogenesis, development, and differentiation (top hit
GO:0007275, multicellular organism development, contains 474
genes associated with DMPs; FDR Q-value=3.7 ×10−7) (Fig. 1C;
Supplemental Table S4). We also performed a functional overlap
analysis to identify cell- or tissue-specific chromatin signals associ-
atedwith theseDMPsusingeFORGE(Breezeet al. 2016). Significant
overlap (FDR Q-value <0.01) was found with DNase I sensitivity
hotspots, most apparent with pluripotent cells in ENCODE (The
ENCODE Project Consortium 2012; Davis et al. 2018) and fetal tis-
sues within the NIH Roadmap Epigenomics Consortium data set
(Supplemental Data S1; Roadmap Epigenomics Consortium et al.
2015).Chromatin states fromtheNIHRoadmapEpigenomicsCon-
sortiumdata set showan enrichment ofDMPs in regions defined as
active transcriptional start sites in brain tissue and embryonic stem
cells. Of particular interest, given the established importance of
DNMT3A during embryonic development, eFORGE analysis of
blood cell types highlighted an enrichment of DMPs in regions
characterized by repressed Polycomb and enhancer activity.

To provide additional evidence to support the notion that
DNMT3A c.2312G>A; p.(Arg771Gln) carriers show disruption
to developmental pathways, we used the Genomic Regions
Enrichment of Annotation Tool (GREAT) (McLean et al. 2010) to
explore functional pathways enriched in genes annotated to
DNMT3A c.2312G>A; p.(Arg771Gln)–associated DMRs. This re-
vealed a significant effect on genes implicated in developmental

pathways (first ranked GO biological process = skeletal system de-
velopment, fold enrichment =2.5, binomial FDR Q-value=9.22×
10−7), with a specific enrichment for Homeobox protein domain
encoding genes (InterPro; fold enrichment =239.59, binomial
FDRQ-value=4.15×10−23), fundamental for normal developmen-
tal processes. An enrichment for malignancy terms was also noted
(from theMolecular Signatures Database; first ranked term=Genes
with promoters occupied by PML-RARA fusion protein in acute
promyelocytic leukemia [APL] cells NB4 and two APL primary
blasts, based on ChIP-seq data, fold enrichment =3.14, binomial
FDR Q-value=6.18×10−7) (see Supplemental Data S2; Liberzon
et al. 2011).

To establish whether these DMPs are a consistent feature of
TBRS, we profiled a further 15 non-Amish patients carrying dis-
tinct previously published DNMT3A pathogenic variants (Table
1; Fig. 2) using the Illumina EPIC DNA methylation array.
Examination of the DMPs identified in DNMT3A c.2312G>A;
p.(Arg771Gln) carriers revealed that the majority of DMPs were
common to all of the TBRS patients regardless of the underlying
causativeDNMT3Avariant (Fig. 1D), with a Pearson correlation co-
efficient of 0.6620 (P-value <2.2 ×10−16) for effect sizes across all
DMPs. Each variant showed some heterogeneity in effect size
(Fig. 1E), with DNMT3A c.2644C>T p.(Arg882Cys) associated
with the greatest overall changes in DNA methylation. This data
leads us to conclude that TBRS patients show loss of methylation
at sites annotated to key genes involved in development and
growth pathways, mirroring the well-characterized overgrowth
and neurocognitive features that characterize this disorder.

DNMT3A mutations are associated with highly accelerated

epigenetic aging, particularly the cardinal AML driver

mutation p.Arg882Cys

DNA methylation at a specific set of CpG sites, representing a
so-called “epigenetic clock,” has been shown to be strongly

Table 1. TBRS DNMT3A variants are associated with epigenetic age acceleration

ID Nucleotide change Protein change
Chronological

age (yr)
Epigenetic
age (yr)

Epigenetic age
acceleration
(fold change)

Epigenetic age
acceleration
(percentage
increase)

Single nucleotide variants
1 c.929T>A p.(Ile310Asn) 9.27 24.2 2.61 161%
2 c.1594G>A p.(Gly532Ser) 5.92 22.7 3.83 283%
3 c.1645T>C p.(Cys549Arg) 9.36 25 2.67 167%
4 c.1943T>C p.(Leu648Pro) 19.34 32.1 1.66 66%
5 c.2099C>T p.(Pro700Leu) 13.45 32.5 2.42 142%
6 c.2245C>T p.(Arg749Cys) 13.87 19.6 1.41 41%
7 c.2246G>A p.(Arg749His) 8.9 33.6 3.78 278%
8 c.2312G>A p.(Arg771Gln) 8–23 15.8–36.1 1.41 41%a

9 c.2512A>G p.(Asn838Asp) 14.44 38.8 2.69 169%
10 c.2644C>T p.(Arg882Cys) 2.28 21.9 9.61 861%
11 c.2705T>C p.(Phe902Ser) 9.84 25.4 2.58 158%
12 c.2711C>T p.(Pro904Leu) 7.78 35.7 4.59 359%

In-frame deletions
13 c.889_891delTGG p.(Trp297del) 5.82 23.2 3.99 299%
14 c.2255_2257delTCT p.(Phe752del) 3.05 10.6 3.48 248%

Duplications resulting in a frameshift
15 c.2297dupA p.(Arg767fs) 3.12 14.4 4.62 362%
16 c.934_937dupTCTT p.(Ser312fs) 21 38.9 1.85 85%

DNMT3A genotype (p.(Arg771Gln), shown in blue; p.(Arg882Cys), shown in red), chronological age, predicted epigenetic age, and percentage of
age acceleration calculated for TBRS syndrome cases included in this study.
aEpigenetic age acceleration taken from the linear regression model applied to four individuals carrying the mutation.
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correlatedwith chronological age (Horvath 2013).Deviations from
chronological agehavebeenassociatedwith severalmeasures of ac-
celerated biological aging and age-related phenotypes (Johnson
et al. 2012; Levine et al. 2015; Marioni et al. 2015; Chen et al.
2016). We investigated the DNA methylation age of DNMT3A
c.2312G>A p.(Arg771Gln) carriers using the DNA age calculator
(Horvath 2013; http://dnamage.genetics.ucla.edu/), finding that
DNMT3A c.2312G>A; p.(Arg771Gln) carriers show evidence for
highly accelerated aging—an increase of ∼40% beyond their chro-
nological age—compared with wild-type family members
(ANCOVA P-value =0.004) (Fig. 3A). Only one of 353 probes used
in the epigenetic clock (Horvath 2013) overlapped with the
DMPs significantly associated with the DNMT3A c.2312G>A;
p.(Arg771Gln) pathogenic variant, leading us to conclude that
this finding represented a true acceleration of epigenetic age.
Furthermore, compared with an extensive number (322) of wild-
type control samples profiled in a previous study from our group
(Hannon et al. 2016),DNMT3A c.2312G>A; p.(Arg771Gln), carri-
ers were consistent outliers for epigenetic age, suggesting their
profiles fall outside the normal distribution of variance observed
in the general population (Supplemental Fig. S8). Consistent
with this, the mosaic Amish father was found to have an interme-
diate level of epigenetic age acceleration, with a 23% increase over
his chronological age. This age acceleration was a cumulative pro-
cess as indicated by the increased slope of DNMT3A c.2312G>A;
p.(Arg771Gln) carriers versus wild-type. Epigenetic age could
therefore be predicted by the linear regression model as follows:
epigenetic age=4.81+1.405× chronological age. The cumulative
increase of epigenetic age relative to chronological age is also nota-
ble compared with a recent meta-analysis of longitudinal cohort
data that shows the trajectory of epigenetic age in different popula-
tions progresses at a slightly slower rate compared with increasing
chronological age (Marioni et al. 2019).

We next looked for evidence of elevated epigenetic aging in
TBRS patients carrying one of the 15 additional de novo
DNMT3A pathogenic variants. All TBRS patients showed accelerat-
ed epigenetic aging, although the position and type of each variant
result in differing degrees of accelerated epigenetic aging (Table 1).
The greatest rate of epigenetic age acceleration (>800%) was ob-
served in association with the germline p.(Arg882Cys) substitu-

tion, somatic mutation of DNMT3A Arg882 being the most
commonly associated with AML.

Altered epigenetic aging in methyltransferase-associated human

growth disorders

To determinewhether altered epigenetic aging is a characteristic of
other growth disorders associated with disruption of epigenetic
regulatory molecules, we extended our study using publicly avail-
able Illumina 450K DNA methylation data. We first analyzed the
data from individuals with Sotos syndrome, a congenital over-
growth syndrome that results from mutation of the epigenetic
modifier NSD1 (Supplemental Table S5), a lysine histone methyl-
transferase (Kurotaki et al. 2002; Qiao et al. 2011). Consistent
with DNMT3A pathogenic variant carriers, these individuals are
characterized by an epigenetic age acceleration of ∼40% (linear re-
gression model R2 = 0.869, P-value=6.4 ×10−9) (Fig. 3B,D). We
then examined data fromKabuki syndromepatients carrying path-
ogenic variants in the KMT2D gene (Supplemental Table S6),
which also encodes a lysine histone methyltransferase (Ng et al.
2010; Butcher et al. 2017). Kabuki syndrome is a multisystem dis-
order. Patients typically present with postnatal growth deficiency
(rather than overgrowth), a characteristic facial gestalt, ID, and
other variable phenotypic features. Although there is more hetero-
geneity in epigenetic age when compared with the NSD1 patho-
genic variant carriers, there was a significant reduction in
epigenetic age of ∼40% seen across these individuals (linear regres-
sion model R2 = 0.418, P-value=0.023) (Fig. 3C,D).

Discussion

To date, 78 individuals have been described with the overgrowth
condition TBRS. Within this group, a wide variety of germline
DNMT3A pathogenic variants have been reported, including 33
missense, eight stop-gain, seven frameshift and two splice site var-
iants, two in-frame and five whole-gene deletions (including a set
of identical twins) (Tatton-Brown et al. 2014; Okamoto et al. 2016;
Tlemsani et al. 2016; Hollink et al. 2017; Kosaki et al. 2017; Lemire
et al. 2017; Shen et al. 2017; Spencer et al. 2017; Tatton-Brown
et al. 2017, 2018; Xin et al. 2017). Clinically, the predominant

900aa

PRC2/EED-EZH2 complex S-adenosyl-L-methionine

199

292 350

403

482

494 586

614 634 912

641-645 686-688 891-893
AA posi�ons

PWWP ADD MTaseDomains

Interac�ons

DNMT1 and DNMT3B

100aa 200aa 300aa 400aa 500aa 600aa 700aa 800aaScale:

Missense variant

In-frame dele�on

Frameshi� variant
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features of TBRS are overgrowth, a characteristic facial gestalt, and
neurocognitive impairment. These features show phenotypic
overlap with conditions associated with germline pathogenic var-
iants in other epigenetic regulatory genes, including Sotos and
Weaver syndromes caused by variants in NSD1 and EZH2 histone
methyltransferases, respectively (Tatton-Brown et al. 2017). These
genes encode essential epigenetic regulatory proteins, with a dual
somatic/germline role in the pathogenesis of hematological malig-
nancies and overgrowth syndromes with variable degrees of intel-
lectual impairment (Tatton-Brown et al. 2014).

The majority of DNMT3A pathogenic variants in TBRS have
been found to be de novo, with five individuals inheriting the
pathogenic variant from two mosaic parents (Tlemsani et al.
2016; Xin et al. 2017) and two individuals inheriting the patho-
genic variant from their affected father (Lemire et al. 2017).
Extensive studies of the role of DNMT3A in hematopoietic stem
cell (HSC) differentiation are also reported, including the regular
occurrence of somatic DNMT3A variants in patients with acute
myeloid leukemia (AML). The most common somatic pathogenic
variant reported in patients with AML affects the amino acid resi-
due Arg882. To date, pathogenic variants predicted to affect this

residue have been described in the
germline of 12 TBRS patients, five
with p.(Arg882His) and seven with
p.(Arg882Cys) (Tlemsani et al. 2016;
Hollink et al. 2017; Kosaki et al. 2017;
Shen et al. 2017; Spencer et al. 2017;
Tatton-Brown et al. 2018). Despite these
studies, the underlying biological mech-
anism and outcomes of DNMT3A gene
mutation in TBRS, as well as the potential
risks of hematological malignancy, re-
main largely unclear.

Here we investigated variation in
DNA methylation associated with a
germline heterozygous DNMT3A mis-
sense pathogenic variant c.2312G>A;
p.(Arg771Gln), affecting the catalytic
MTase domain, in a large Amish family
comprising four children with TBRS, un-
affected siblings, and their mosaic father
who displayed an intermediate clinical
phenotype (Xin et al. 2017). Affected in-
dividuals were characterized by wide-
spread hypomethylation, with DMPs
enriched in the vicinity of genes/reg-
ulatory regions associated with growth
and development, tissue morphogene-
sis, and differentiation. The magnitude
of hypomethylation typically exceeded
10%, a level often considered to show
biological significance (Leenen et al.
2016). The accelerated epigenetic age ob-
served did not appear to be driven by
overlap of the DNMT3A c.2312G>A;
p.(Arg771Gln) variant–associated DMPs
with the probes that comprise the epige-
netic clock as shown by overlap with
only one out of the 353 probes used in
the epigenetic age estimation (Horvath
2013). Although the relevance of blood
cells to understanding the etiology of

TBRS is not yet known, we hypothesize that our findings will be
generalizable across cell types given the ubiquitous developmental
expression of DNMT3A and given that many age-associated DMPs
are shared across different cell types (Zhu et al. 2018). Nevertheless,
it would still be prudent to undertake epigenetic age assessment of
other tissues from TBRS patients to determine whether epigenetic
age truly is accelerated across all cell typesora finding that is limited
to blood.

Although dysregulation of growth control has been linked to
numerous developmental disorders and malignancy, the specific
molecular basis of this relationship is not fully understood. The as-
sessment of DMPs associated with the DNMT3A c.2312G >A;
p.(Arg771Gln) variant identified an enrichment of pluripotent
and fetal DNase I sensitivity hotspots, as well as brain and embry-
onic stem cell–associated chromatin sites according to The
ENCODE Project Consortium and Epigenomic Roadmap
Consortium data sets (Breeze et al. 2016). Similarly, functional an-
notation based on Gene Ontology terms showed an overrepresen-
tation of pathways related to morphogenesis, development, and
differentiation annotations. DNMT3A loss of function has previ-
ously been reported to result in up-regulated multipotency genes

A B

C D

w

Figure 3. Altered epigenetic aging is observed in methyltransferase-associated human growth disor-
ders. (A) Scatter plot comparing “DNA methylation age” derived from the Illumina 450K data (y-axis)
and actual chronological age (x-axis) in DNMT3A c.2312G>A p.(Arg771Gln) pathogenic variant carriers
(red) versuswild-type family members (blue). Green indicates themosaic individual. The linear regression
model is also shown. (B) Scatter plot comparing DNA methylation age versus chronological age in
patients with Sotos syndrome. In-frame legend illustrates the differentNSD1 pathogenic variants studied.
(C ) Scatter plot comparing DNA methylation age versus chronological age in patients with Kabuki syn-
drome. In-frame legend illustrates the different KMT2D pathogenic variants studied. (D) Boxplot compar-
ing the epigenetic age acceleration rates found in association with TBRS DNMT3A variants, KMT2D
Kabuki syndrome variants, andNSD1 Sotos syndrome variants. Each age acceleration observation is plot-
ted as a circle. The dotted red line denotes no age acceleration.
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and impaired differentiation of neural stem cells and HSCs (Wu
et al. 2010; Challen et al. 2011; Jeong et al. 2018) compared with
a gain-of-function DNMT3A variant that may increase cellular dif-
ferentiation (Heyn et al. 2019). It is thus conceivable that TBRS-as-
sociated DNMT3Avariantsmay promote increased proliferation of
stem/progenitor cell pool, resulting in increased cell numbers dur-
ing organ morphogenesis and clinical overgrowth.

Our finding of altered epigenetic outcomes in TBRS prompted
us to consider similar investigations in other growth disorders as-
sociated with epigenetic dysfunction: Sotos syndrome, a neurode-
velopmental disorder with features overlapping TBRS and with
association with overgrowth in childhood owing to histonemeth-
yltransferase NSD1 gene alterations, and Kabuki syndrome, a dis-
tinct neurodevelopmental disorder associated with poor growth
and histone methyltransferase KMT2D gene alterations. This
work defined clear aberrations in epigenetic aging appropriate to
the specific nature of each condition. In both overgrowth condi-
tions, TBRS and Sotos syndrome, we identified accelerated epige-
netic aging as measured by the DNA methylation age calculator
(Horvath 2013). Conversely, patients with Kabuki syndrome, clin-
ically characterized by poor growth, displayed decelerated epige-
netic age. Epigenetic age has been strongly correlated with
chronological age in unaffected individuals in previous studies of
a variety of tissue types (Hannum et al. 2013; Horvath 2013).
The observation of accelerated epigenetic aging in both TBRS
and Sotos syndrome potentially results from reducedmethyltrans-
ferase activity in addition to increased cell turnover associated
with the overgrowth seen with these disorders, with the converse
being the case for Kabuki syndrome. Accelerated epigenetic aging
has been associated with age-related clinical characteristics and
mortality in epidemiological studies. For example, accelerated epi-
genetic age in lymphocytes correlates with reduced physical and
cognitive function in the elderly and with increased overall mor-
tality independent of other variables such as BMI, sex, and smok-
ing status (Marioni et al. 2015; Chen et al. 2016). The molecular
basis of TBRS has only been determined relatively recently, and
as such, most of the affected individuals reported are children
and young adults. There is therefore still only very limited data
available relating to the progression and prognosis of this disorder,
meaning that it is not yet possible to determine whether there
might be any clinical evidence ofmultimorbidity indicative of pre-
mature aging or a reduction in average life span in TBRS. Further
long-term natural history studies of TBRS patients will be extreme-
ly helpful for determining the clinical implications of the epige-
netic age acceleration observed as a feature of this disorder.

Accelerated epigenetic age has previously been reported in as-
sociation with specific diseases such as Huntington’s disease (+3.4
yr) (Horvath et al. 2016), Down syndrome (+6.6 yr) (Horvath et al.
2015), and Werner’s syndrome (+6.4 yr) (Maierhofer et al. 2017).
The accelerated epigenetic aging described in association with
these disorders is an average increase in epigenetic age, which is
relatively consistent throughout lifespan. A distinguishing feature
of carriers of the Amish DNMT3A c.2312G>A; p.(Arg771Gln) var-
iant is the year-on-year or cumulative increase of accelerated epige-
netic aging over life time course, in other words, a true acceleration
of epigenetic aging. Although it was not possible to undertake
these studies for other DNMT3A variants, this may be indicative
of a similar effect on cumulative epigenetic age acceleration over
the life course in TBRS. It is also noted that the gene encoding
DNMT3L is located on Chromosome 21; given the previous report
of an average DNAmethylation age acceleration of 6.6 yr in blood
and brain tissue in individuals with Down syndrome (Horvath

et al. 2015) and the role of DNMT3L in stimulating DNMT3A de
novo methylation, further investigations are needed to explore
the potential relevance of this observation.

There are currently only four reported cases of an AML tumor
carrying the DNMT3A p.Arg771Gln substitution. Biochemical
measurements of DNMT3A show that mutations at both the
Arg771 and Arg882 residues result in reduced methyltransferase
activity, with a greater degree of reduction resulting from Arg882
variants compared with Arg771 variants (2.4-fold difference)
(Holz-Schietinger et al. 2012). Given this reduced methyltransfer-
ase activity, we may expect to observe more pronounced changes
in DNA methylation in patients with germline variants affecting
Arg882 compared with variants affecting other amino acid resi-
dues such as Arg771.Our data reflected this notion,with alteration
Arg882 displaying markedly greater methylation changes com-
pared with the other DNMT3A mutations investigated in this
study. Currently, available literature suggests that the risk of hema-
tological malignancy in TBRS individuals may vary depending on
the specific pathogenic variant underling their condition (Hollink
et al. 2017). The significantly advanced epigenetic age that we ob-
served in association with p.Arg882Cys may explain why hemato-
logical malignancy has to date only been reported in two TBRS
patients, one harboring this germline variant and the second the
p.Tyr735Ser variant, the latter not being assessed in this study
(Hollink et al. 2017; Tatton-Brown et al. 2018).

In summary, our findings identify widespread DNA hypome-
thylation in genes involved in morphogenesis, development, dif-
ferentiation, and malignancy in TBRS patients. TBRS patients
also displayed highly accelerated DNA methylation aging. Our
studies additionally defined phenotype-related altered epigenetic
aging in two histonemethyltransferase disorders:NSD1 Sotos syn-
drome overgrowth disorder and KMT2D Kabuki syndrome growth
impairment. Taken together, these findings provide important
new insights into the role of DNMT3A during development and
of relevance to hematological malignancy, and define perturba-
tion to epigenetic machinery and biological aging as common
themes in overgrowth and growth deficiency syndromes.

Methods

Genetic and clinical studies

The phenotypic features of the four affected siblings (three females
and one male, aged 10–25 yr) (Fig. 1A, individuals III:3, III:5, III:7,
and III:13) include macrocephaly, tall stature, hypotonia, mild to
moderate ID, behavioral problems, and a distinctive facial appear-
ance. Whole-genome SNP genotyping and exome sequencing of
DNA samples taken with informed consent under regionally ap-
proved protocols excluded pathogenic variants in known genes,
or candidate new genes, associated with neurodevelopmental dis-
orders. Subsequent studies defined a heterozygous c.2312G>A
variant in DNMT3A, resulting in a p.(Arg771Gln) substitution, as
the cause of the condition. Full clinical details are previously de-
scribed (Xin et al. 2017). Further testing revealed mosaicism for
the DNMT3A c.2312G>A variant in the father, and Xin et al.
(2017) showed pathogenic variant load varied in different tissue
types.

DNA methylation profiling

Genomic DNA from blood was sodium bisulfite converted using
the EZ-96 DNA methylation kit (Zymo Research) and DNA meth-
ylation quantified across the genome using the Illumina
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Infinium HumanMethylation450 array (Illumina 450K array)
(Illumina). The additional 15 DNMT3A pathogenic variants were
profiled using the Illumina Infinium EPIC array (Illumina). The
Bioconductor package wateRmelon (Pidsley et al. 2013) in R 3.4.1
(R Core Team2017) was used to import IDAT files, and after check-
ing for suitable sodium bisulfite conversion (bisulfite control
probe median >90%), the DNA methylation data were imported
and quantile normalized using the dasen function in wateRmelon
and methylation beta values produced (ratio of intensities for
methylated versus unmethylated alleles). Probes showing a detec-
tion P-value >0.05 in at least 1% of samples or a beadcount <3 in
5% of samples were removed across all samples. Any samples
showing low quality, indicated by a detection P-value >0.05 in
≥1% of probes within a sample, were removed from analysis.
Probes containing common SNPs within 10 bp of the CpG site
were removed (minor allele frequency >5%). Nonspecific probes
and probes on the sex chromosomes were also removed (Chen
et al. 2013; Price et al. 2013).

Identification of DMPs

DMPs were identified using a limma-based linear model based on
pathogenic variant genotype and sex as a covariate (Smyth 2004)
and a Benjamini–Hochberg FDR of 5% applied (Benjamini and
Hochberg 1995). When the epigenetic age was used as a covariate,
a similar level of DMPs were detected (2557 DMPs) with an 80%
overlap to the limma model without age as a covariate. Changes
in methylation were calculated based on comparison between
DNMT3A c.2312G>A; p.(Arg771Gln) carriers versus wild-type in-
dividuals in the Amish pedigree. The additional 15DNMT3A path-
ogenic variants were assessed relative to seven wild-type control
samples run on the same EPIC array run. Blood cell counts were
unknown and so were estimated using the DNA methylation age
calculator (Horvath 2013; Koestler et al. 2013) and assessed in
the linear model. To identify DMPs, the package DMRcate was
used with the same limma-based design (Peters et al. 2015).

Gene Ontology and functional enrichment analyses

Gene Ontology enrichment analysis was performed using genes
annotated to FDR corrected DMPs using the gometh function of
the missMethyl package (Phipson et al. 2016), which takes into
account potential bias of probe distributions on the beadchip ar-
ray. KEGG pathway analysis was performed using the gsameth
command of missMethyl and KEGG annotation files from the
Bioconductor KEGGREST package (http://bioconductor.org/
packages/release/bioc/html/KEGGREST.html). Regional enrich-
ment analysis based on Illumina annotations was performed using
a chi-squared test with Yates correction in R. DMRs were function-
ally annotated using the webtool GREAT (http://great.stanford
.edu/public/html/). The top P-value–ranked 1000 DMPs were
also annotated using the eFORGE tool (https://eforge
.altiusinstitute.org/) to perform functional overlap analysis for
identifying any cell- or tissue-specific epigenetic signals.

Quantification of global DNA methylation

Global DNA methylation measurements were made using the
luminometric methylation assay (LUMA) (Karimi et al. 2006)
based on cleavage by a methylation-sensitive restriction enzyme
followed by polymerase extension assay via pyrosequencing on
the PyroMark Q24 (Qiagen). Peak heights were obtained using
the Pyro Q24 CpG 2.0.6 software and a t-test applied in R 3.4.1.
Global methylation estimates from the Illumina 450K array
were assessed through R 3.4.1 using summary statistics and a

Wilcoxon rank-sum test on two pairs of samples matched for age
and sex.

DNA methylation age estimation

Epigenetic age calculationsweremade using theDNAmethylation
age calculator (https://dnamage.genetics.ucla.edu/) for Illumina
450K data, and Illumina EPIC arrays were assessed using the agep
function of thewateRmelon Bioconductor package, the latter based
on the original calculator developed by Steve Horvath (2013).
Accelerated age was calculated for the Amish TBRS DNMT3A
c.2312G>A; p.(Arg771Gln) carriers andwild-type familymembers
and Sotos syndrome and Kabuki syndrome patients and compared
with data from322 control individuals taken fromaprevious study
(Hannon et al. 2016), using linear models of recorded chronolog-
ical age and calculated epigenetic age. Estimates of age acceleration
for the additional 15 TBRS cases were calculated by dividing the
calculated epigenetic age with their chronological age. Additional
NSD1 Sotos syndrome patient Illumina DNA methylation files
were obtained fromGEOaccessionGSE74432, with corresponding
chronological ages derived from the associated paper (Choufani
et al. 2015). KMT2D Kabuki syndrome DNA methylation data
and chronological age were obtained from GEO accession
GSE97362 (Butcher et al. 2017).

Validation of DMPs using bisulfite-pyrosequencing

Bisulfite pyrosequencingwas used to validate specific differentially
methylated CpG sites originally identified using the Illumina
450K array. Primers, designed using PyroMark Assay Design soft-
ware (Qiagen), and PCR conditions are provided in Supplemental
Table S7. Bisulfite conversion was performed on ∼500 ng of DNA
using a bisulfite-gold kit (Zymo Research). PCR was performed
with HOT FIREPol DNA polymerase (Solis Biodyne) for 15 min at
95°C followed by 37 cycles of 15 sec at 95°C, 15 sec at annealing
temperature (shown in Supplemental Table S7), and 30 sec at
72°C. A final extension of 10 min at 72°C was then applied.
DNA methylation was then assessed using the resulting bisulfite
PCR amplicons, together with a pyrosequencing primer on
the PyroMark Q24 system (Qiagen) following the manufacturer’s
standard instructions and the Pyro Q24 CpG 2.0.6 software.

Data access

The raw and processed primary data sets generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE128801. R scripts are provided as Supplemental Code S1
and at the following repository: https://github.com/arjeffries/
TBRS2019.
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