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185 ABSTRACT  

186 The accumulation of excess fat in the liver (hepatic steatosis), in the absence of heavy alcohol 

187 consumption, causes nonalcoholic fatty liver disease (NAFLD), which has become a global 

188 epidemic.  Identifying metabolic risk factors that interact with the genetic risk of NAFLD is 

189 important for reducing disease burden.  We tested whether serum glucose, insulin, insulin 

190 resistance, triglycerides, low density lipoprotein cholesterol, high density lipoprotein cholesterol, 

191 body mass index (BMI), and waist-to-hip ratio adjusted for BMI interact with genetic variants in 

192 or near the patatin-like phospholipase domain containing 3 gene (PNPLA3), the glucokinase 

193 regulatory protein gene (GCKR), the neurocan gene (NCAN/TM6SF2), and the 

194 lysophospholipase-like 1 gene (LYPLAL1) to exacerbate hepatic steatosis, estimated by liver 

195 attenuation (LA).  We performed association analyses in ten population-based cohorts 

196 separately and then meta-analyzed results in up to 14,751 individuals (11,870 of European 
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197 ancestry and 2,881 of African ancestry). We found that PNPLA3-rs738409 significantly 

198 interacted with insulin, insulin resistance, BMI, glucose, and TG to increase hepatic steatosis in 

199 nondiabetic individuals carrying the G-allele.  Additionally, GCKR-rs780094 significantly 

200 interacted with insulin, insulin resistance and TG.  Conditional analyses, using the two largest 

201 European ancestry cohorts in the study, showed that insulin levels accounted for most of the 

202 interaction of PNPLA3-rs738409 with BMI, glucose, and TG in nondiabetic individuals.  Insulin, 

203 PNPLA-rs738409, and their interaction accounted for at least 8% of the variance in hepatic 

204 steatosis in these two cohorts.

205 Conclusion: Our results suggest that insulin resistance, either directly or via the resultant 

206 elevated insulin levels, more than other metabolic traits, amplifies the PNPLA3 rs738409-G 

207 genetic risk for hepatic steatosis. These results suggest that improving insulin resistance in 

208 nondiabetic individuals carrying PNPLA3-rs738409-G may preferentially decrease hepatic 

209 steatosis. 

210

211 Nonalcoholic fatty liver disease (NAFLD) is a result of the excess accumulation of lipids in 

212 hepatocytes (hepatic steatosis) in the absence of heavy alcohol consumption(1).  Hepatic 

213 steatosis is also associated with the risk of developing dyslipidemia or dysglycemia(2), as well 

214 as cardiovascular disease, which is the number one cause of death in individuals with NAFLD(3, 

215 4).  Hepatic steatosis may progress to advanced liver disease in the form of nonalcoholic 

216 steatohepatitis, fibrosis (cirrhosis), and cancer (hepatocellular carcinoma)(5-7). In the U.S., the 

217 prevalence of hepatic steatosis in the adult population is between 10% to 30%; worldwide it is 

218 25% to 45%(8). While the pathogenesis of NAFLD is not entirely understood, both genetic 

219 factors and metabolic traits increase the risk of hepatic steatosis.  

220

221 Heritability of hepatic steatosis ranges from 22 to 38% across all ancestries suggesting that 

222 specific genotypes may predispose individuals to NAFLD(1).  Previously, the Genetics of 

223 Obesity-Related Liver Disease Consortium conducted a genome-wide association study in 

224 7,176 individuals of European ancestry (EA) with replication in histology-based samples (9).  

225 This study identified that rs738409 (PNPLA3), a missense single nucleotide polymorphism 

226 (SNP) first associated with hepatic fat content a decade ago (10), the missense variant 

227 rs2228603 (NCAN/TM6SF2) and intronic variants rs12137855 (LYPLAL1) and rs780094 

228 (GCKR) were significantly associated with hepatic steatosis(9).  We and others have replicated 

229 the association of these common variants with hepatic steatosis in other populations and 

230 ethnicities (11-13), and the associations are consistent between those of EA and African 
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231 ancestry (AA) (direction of effect is similar)(11).  Further, the G allele for rs738409 was 

232 associated with susceptibility to nonalcoholic steatohepatitis (OR 2.64, 95% CI: 1.85-3.75, p≤ 

233 1.0E-04), nonalcoholic steatohepatitis severity (OR 1.85, 95% CI: 1.05-3.26, p≤ 3.5E-02) and 

234 fibrosis (OR 1.95, 95% CI: 1.17-3.26, p≤ 1.3E-02) in EA individuals(14). 

235

236 Traits that predispose to metabolic syndrome, i.e. higher body mass index (BMI) (15), 

237 dyslipidemia, hyperglycemia, and insulin resistance are associated with hepatic steatosis (2, 3, 

238 16).  Eighty to ninety percent of obese (BMI ≥ 30 kg/m2) adults have hepatic steatosis(17), while 

239 20-80% of individuals with hepatic steatosis also have higher levels of triglyceride (TG) and low-

240 density lipoprotein cholesterol (LDL), but lower levels of high-density lipoprotein cholesterol 

241 (HDL)(18). Diabetes is also commonly associated with hepatic steatosis(19).  How these 

242 modifiable metabolic traits interact with genetic variation to influence risk for hepatic steatosis is 

243 not known.  

244

245 In this cross-sectional study, we tested whether several metabolic traits interact with the four 

246 genetic variants previously associated with hepatic steatosis(9) to affect liver attenuation (LA), a 

247 computed tomographic quantitative measure that is inversely related to histologically measured 

248 liver fat (20). The metabolic traits tested were: insulin resistance (as homeostatic model of 

249 insulin resistance (HOMA-IR)), fasting insulin, fasting glucose, BMI, centralized fat deposition 

250 measured by waist-to-hip ratio adjusted for BMI (WHRadjBMI), fasting TG, fasting HDL and 

251 fasting LDL.  We first carried out interaction analyses between each of these traits and each of 

252 the genetic variants in ten separate population-based cohorts from seven different studies. Then 

253 we meta-analyzed results across cohorts in up to 14,751 individuals (EA, n=11,870 and 

254 AA, n=2,881). We then carried out conditional analyses in the two largest EA cohorts in the 

255 study to determine the driving metabolic factor.

256

257 POPULATION AND METHODS

258 Ethics Statement

259 The Institutional Review Boards or equivalent committees of all participating studies approved 

260 this study.  The principal investigator of each institution obtained written consent from 

261 participants.

262 Study Description
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263 The study was comprised of up to 14,751 individuals (EA, n=11,870 and AA, n=2,881); 56% of 

264 participants were female. The sample derived from seven population-based studies participating 

265 in the Genetics of Obesity-Related Liver Disease Consortium: Age, Gene/Environment 

266 Susceptibility-Reykjavik (AGES), Old Order Amish (Amish), Coronary Artery Risk Development 

267 in Young Adults (CARDIA), Family Heart Study (FamHS), Framingham Heart Study (FHS), 

268 Genetic Epidemiology Network of Arteriopathy (GENOA), and Multi-Ethnic Study of 

269 Atherosclerosis (MESA).  In total, ten cohorts were included in the analysis, as three studies 

270 contributed two ethnic groups (AA, EA).  Each ethnic group was analyzed separately.  CARDIA, 

271 MESA, and AGES have unrelated individuals while FHS, Amish, GENOA, and FamHS are 

272 family-based.  Detailed information about the characteristics and design of each study is 

273 provided in Supplementary Table 1.  

274

275 Outcome variable and metabolic traits

276 The outcome variable was LA (liver attenuation), measured non-invasively with computed 

277 tomography in Hounsfield units (HU) (21). LA is inversely proportional to liver fat, i.e. lower LA 

278 values indicate a higher fat content in the liver (more hepatic steatosis)(2). The procedures 

279 followed by each cohort to measure LA are described in Supplementary Table 2.  Individuals 

280 with active malignancies, focal lesions, or other incidental findings on computed tomography 

281 were excluded from the studies.

282

283 Metabolic traits of interest were harmonized across cohorts following standard clinical 

284 definitions. Overall adiposity was characterized by BMI (kg/m2), and abdominal adiposity by 

285 waist-to-hip ratio adjusted for BMI (WHRadjBMI, cm).  Since waist-to-hip ratio is correlated with 

286 both BMI and visceral fat, we chose to use WHRadjBMI to have a measure that is independent of 

287 overall fatness (i.e. BMI), but does reflect visceral adiposity, and is easily measured in the clinic.  

288 Fasting insulin (mU/L) and fasting glucose (mmol/L) were measured from plasma or serum 

289 using standard laboratory techniques detailed in Supplementary Table 2. When fasting 

290 glucose was measured from whole blood, it was converted to plasma glucose using a correction 

291 factor of 1.13 (22).  HOMA-IR was assessed using fasting glucose (mmol/L) x fasting insulin 

292 (mU/L) divided by 22.5 (23).  Each cohort assayed fasting TG (mg/dL) and fasting HDL (mg/dL) 

293 using methods described in Supplementary Table 2.  If fasting LDL (mg/dL) was assayed, it 

294 was used.  Otherwise, LDL was calculated using the Friedewald formula, LDLF =(Total 

295 cholesterol(mg/dL) - HDL(mg/dL) -TG(mg/dL)/5.0), only if TG < 400 mg/dL (24). 
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296

297 Alcohol consumption, history of diabetes, and use of lipid lowering medications were acquired 

298 by questionnaire.  Total alcohol consumption, defined in drinks per week, was calculated from 

299 daily intake of beer, wine, and spirits. One drink was defined as a serving of 14 grams of 

300 ethanol, the same as a 12 oz. bottle or can of beer, 5 oz. glass of wine, or 1.5 oz. shot of 80-

301 proof spirits such as gin, vodka, or whiskey(25).  Heavy drinking was defined as ≥ 8 drinks per 

302 week for women and ≥ 15 drinks per week for men (26).  Diabetes (Type 1, Type 2) was defined 

303 as having fasting plasma glucose levels ≥ 7 mmol/L (126 mg/dL), or self-reporting the use of 

304 insulin or oral antidiabetic medications, or having a physician diagnosis of diabetes. The use of 

305 statins was assessed from medication questionnaires.  

306

307 Genotyping and Imputation

308     

309 Four common variants were included in the analyses: rs738409 - a missense variant in the 

310 patatin-like phospholipase domain containing 3 gene (PNPLA3); rs780094, an intronic variant 

311 within the glucokinase regulatory protein gene (GCKR) that is in high linkage disequilibrium  

312 (r2=0.93) with rs1260326, a likely functional missense variant in this gene; rs2228603, a 

313 missense variant in the neurocan gene (NCAN) that is in high linkage disequilibrium (r2=0.798) 

314 with rs585422926, a likely functional missense variant in the transmembrane 6 Superfamily 

315 Member 2 gene (TM6SF2); and rs12137855, an intronic variant in the lysophospholipase-like 1 

316 gene (LYPLAL1). These variants were either directly genotyped (allele counts were coded 0, 1, 

317 or 2), or dosages were imputed from HapMap II or 1000G.  Genotype calling algorithms and 

318 imputation methods are detailed in Supplementary Table 3. 

319

320 STATISTICAL ANALYSIS

321

322 Cohort-specific analyses

323 Cohorts performed analyses separately in each ancestry group (EA, AA).  LA and metabolic 

324 traits, used as continuous variables in all analyses, were adjusted for sex, age, principal 

325 component estimates of ancestry, and study-specific covariates using linear regression as 

326 detailed in Supplementary Table 2.  LA was also adjusted for alcohol consumption, a 

327 continuous variable (drinks/week), and for scan penetrance using phantom or spleen density.  

328 Residuals from adjusted LA and metabolic traits were transformed using inverse normal 
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329 transformation (IVN) to reduce the influence of outliers and to standardize the phenotypes 

330 across cohorts. Inverse normal-transformed residuals of LA, (LAivn), and each metabolic trait 

331 (MTivn) were used to fit the interaction models. 

332

333 Each cohort tested for statistical interactions between each variant and each metabolic trait 

334 using multivariable linear regression or mixed linear modeling.  LAivn was the dependent 

335 variable.  The independent variables were each SNP and MTivn, plus the interaction: 

336 LAivn = α + β1 (SNP) + β2 (MTivn) + β3 (SNP x MTivn) + є.  An additive model of inheritance was 

337 assumed. Studies with family data (FHS, GENOA, Amish, and FamHS) used linear mixed 

338 models to account for family relatedness among participants and computed robust standard 

339 errors.  Participants with diabetes (Type1 and Type 2) were excluded from the insulin, glucose 

340 and HOMA-IR models, and those taking statins were excluded from the LDL model.  As a 

341 secondary analysis, BMI was included as a covariate in the models to investigate whether the 

342 effect of the interaction between each SNP and each metabolic trait on LAivn occurred 

343 independent of overall adiposity.  Associations were carried out using MMAP(27), R(28), and 

344 SAS (29) software.

345

346 Meta-analyses

347 We conducted fixed-effects meta-analyses by ancestry and overall on the parameter estimates 

348 (β-coefficients and standard errors) for the main effects and interaction effects. We utilized the 

349 inverse variance weighting method implemented in METAL (30).  Using Cochran’s Q test (31), 

350 we tested for heterogeneity of effects across all analyses.  Within ancestries, focusing on 

351 interactions, we found evidence of heterogeneity only for the interaction between TG and GCKR 

352 in the EA cohorts.  We did not find any heterogeneity for the interaction in the meta-analyses 

353 between the two ancestry groups (EA vs AA); thus, we report the combined ancestry meta-

354 analyses.  To determine the level of statistical significance while accounting for multiple testing, 

355 we applied a Bonferroni correction that consisted of grouping correlated traits into three 

356 metabolic domains: insulin-glucose, adiposity, and lipids. The critical p-value α=0.05 was 

357 divided by 12 (4 variants x 3 metabolic domains) to obtain a corrected p-value.  Meta-analyses 

358 results and heterogeneity tests were considered significant if the two-tailed p-value was 

359 ≤ 4.17E-03.  As a secondary analysis, to investigate whether the statistically significant 

360 interactions were consistent between genders, we fit the interaction models in men and women 

361 separately, and meta-analyzed results within gender. 

362
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363 Conditional Analyses in FamHS and FHS 

364 To determine whether the interaction of BMI, glucose or TG with PNPLA3-rs738409 was 

365 independent of insulin, we analyzed each trait’s interaction effect before and after including 

366 insulin in the model.  The analyses were performed with EA individuals in FamHS and replicated 

367 in FHS.  We chose these two cohorts because they are the two largest cohorts in the study; 

368 together they represent more than 1/3 of our total sample.  Individuals with diabetes and/or 

369 missing information for the metabolic traits of interest were excluded resulting in a sample of 

370 2,280 individuals in FamHS and 2,581 in FHS.  After adjusting LA for phantom in both cohorts, 

371 and for field centers in FamHS, LA residuals were transformed using inverse normal 

372 transformation to approximate normality.  LA transformed residuals (LAivn) were used as the 

373 dependent variable.  Using linear mixed models, we first regressed LAivn on either BMI, glucose, 

374 or TG, and their interaction with PNPLA3-rs738409 (Supplementary Text).  We then added 

375 insulin to the models and its interaction with PNPLA3-rs738409 and the metabolic trait (either 

376 BMI, glucose, or TG).  Insulin and TG were log-transformed due to the presence of influential 

377 outliers.  Models were adjusted for age, sex, and alcohol consumption (drinks/week), and for 

378 genotype batch effects in FamHS.  Results from conditional analyses in each cohort were then 

379 meta-analyzed. 

380

381 The conditional models included principal components to adjust for population stratification.  

382 Because the principal components were not associated with LAivn in either cohort, and their 

383 inclusion in the conditional models did not change the inferences, we present the models 

384 without them.  We also performed conditional analyses after excluding individuals from FamHS 

385 (n=231), and FHS (n=371) who reported heavy alcohol use (≥ 8 drinks per week for women, 

386 and ≥ 15 drinks per week for men (Supplementary Tables 10-12) (26).  Since the inferences 

387 were unchanged, to increase power, we included all individuals, and adjusted for alcohol as a 

388 covariate.  Additionally, we conducted the conditional analyses with log-transformed HOMA-IR 

389 instead of log-transformed insulin (Supplementary Tables 13-15).  Insulin and HOMA-IR 

390 provided similar inferences. Because glucose explains significantly less of the variation in LAinv, 

391 we focused on insulin over HOMA-IR since there was no added benefit of measuring glucose on 

392 variance explained by HOMA-IR than with just measuring insulin. 

393

394 Illustration in FamHS of the interaction between insulin and PNPLA3-rs738409 in 

395 individuals without diabetes
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396 To assess the interaction effect of insulin with PNPLA3-rs738409 on hepatic steatosis 

397 prevalence in FamHS, we plotted the percentage of individuals with LA ≤ 60 HU per PNPLA3-

398 rs738409 genotype by the lowest and highest quartile of insulin.  Individuals with diabetes 

399 and/or missing information for insulin were excluded and ancestries were combined to obtain a 

400 sample of n=2,725.  LA and insulin were not adjusted or transformed.  The LA cut point of ≤ 60 

401 HU, which corresponds to a liver/spleen ratio of 1.1, has previously been shown to identify 

402 individuals with moderate to severe macrovesicular steatosis (≥ 30% of the liver parenchyma 

403 with fat) at histology with a high diagnostic accuracy (32).  In the literature, ≥ 30% liver fat 

404 suggests moderate to severe hepatic steatosis (33). 

405

406 RESULTS

407 Demographics and clinical characteristics across the study cohorts are presented in Table 1. 

408 The mean age ± standard deviation (SD) across cohorts ranged from 49.47±3.86 to 76.38±5.46 

409 years old.  All cohorts included more women than men.  The mean±SD of LA across cohorts 

410 ranged from 55.05±12.28 HU to 65.40±9.83 HU.  Mean±SD of fasting insulin levels in non-

411 diabetics ranged from 8.30±5.73 to 13.02±10.22 mU/L and fasting blood glucose levels ranged 

412 from 4.90±0.58 to 5.49±0.50 mmol/L.  The lowest mean±SD for HOMA-IR in non-diabetics was 

413 1.99±1.27 and the highest was 3.14±2.69.  The mean±SD of BMI ranged from 27.00±4.49 to 

414 32.71±7.37 kg/m2.  Several cohorts reported mean fasting TG >100 mg/dL.  Mean±SD for 

415 fasting LDL cholesterol in non-statin users was borderline high in Amish (141.31±8.66 mg/dL) 

416 and AGES (146.84±5.73 mg/dL).  Across cohorts, the range of fasting HDL was within the 

417 recommended limit of ≥ 40 mg/dL.  Heavy drinking varied among studies with GENOA having 

418 the lowest percentage (0%) and CARDIA the highest (37%). 

419

420 PNPLA3-rs738409 and GCKR-rs780094 interact with several metabolic traits 

421 We found significant interactions for PNPLA3-rs738409 and GCKR-rs780094 with several 

422 metabolic traits in combined ancestries after adjusting for multiple comparisons (Table 2, 

423 Supplementary Table 4).  PNPLA3-rs738409 interacted with insulin (p= 4.79E-14), HOMA-IR 

424 (p= 4.68E-15), glucose (p= 1.26E-03), BMI (p= 8.13E-08) and TG (p=2.95E-03).  As each of 

425 these metabolic traits increased, a decrease in LAivn (i.e. higher fat content in the liver) became 

426 more pronounced in presence of the G allele at PNPLA3-rs738409 as compared to the 

427 presence of the C allele.  Additionally, GCKR-rs780094 interacted with insulin (p= 4.57E-04), 

428 HOMA-IR (p= 1.32E-03), and TG (p= 4.17E-03).  As levels of insulin, HOMA-IR, and TG 

429 increased, a decrease in LAivn (i.e. higher fat content in the liver) became more pronounced in 
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430 the presence of the T allele at GCKR-rs780094, compared to the C allele.  All interactions 

431 remained significant after adjusting for BMI (Supplementary Table 5) suggesting that overall 

432 adiposity did not alter these effects.  We did not find evidence of significant interactions between 

433 any of the four genetic variants and WHRadjBMI, LDL, or HDL.  Although the interaction between 

434 WHRadjBMI and PNPLA3 did not reach the Bonferroni significance level, it was borderline 

435 significant. This suggests that a larger sample size may be needed to detect an interaction.  

436 Alternatively, the lack of statistical significance could be because WHRadjBMI does not represent 

437 overall fatness to the extent that BMI or other anthropometric measurements do. 

438

439 We also carried out meta-analyses in men and women separately to investigate possible gender 

440 differences focusing only on the statistically significant interactions with PNPLA3-rs738409 and 

441 GCKR-rs780094 (Supplementary Table 6).  Women made up 56% of our study sample.  

442 The interaction effects of insulin and HOMA-IR with PNPLA3-rs738409 did not differ between 

443 men and women, and both reached statistical significance (women= p=3.24E-11, men=7.24E-

444 05; and women: p=1.62E-11, men: p=2.88E-05, respectively).  For glucose, the interaction 

445 effect was slightly less in men than in women (beta smaller), and did not reach significance in 

446 men.  These results suggest that gender did not alter the interactions between PNPLA3-

447 rs738409 and insulin/HOMAIR and the interaction effect of glucose was still present only in 

448 women in the present study.  Further, the interaction effects of BMI with PNPLA3-rs738409 

449 were similar between men and women, and reached significance in both (p=1.20E-03 and 

450 p=3.39E-05, respectively). The interaction effect of TG with PNPLA3- rs738409 did not reach 

451 statistical significance in either gender.  Moreover, the interaction effects of both insulin and 

452 HOMA-IR with GCKR-rs780094 reached significance only in women (p=1.02E-03 and 

453 p= 6.46E-04, respectively).  Similarly, the interaction of TG with GCKR-rs780094 was significant 

454 only in women (p=8.71E-04).  Stratifying by gender substantially reduced our sample size, and 

455 as a result power.  

456

457 Conditional analyses suggest that insulin may mediate the interaction effect of BMI, TG 

458 and glucose on LAivn in individuals without diabetes

459 We observed that the interaction of insulin with PNPLA3-rs738409 had a greater effect on LAivn 

460 (hepatic steatosis defined by liver attenuation) than that of BMI, TG, or glucose.  To determine if 

461 the interaction of BMI, TG, or glucose with PNPLA3-rs738409 was independent of insulin, we 

462 carried out conditional analyses in FamHS and FHS, and meta-analyzed results.  We found that 

463 the interaction of BMI (p=7.57E-02), TG (p=3.49E-01), or glucose (p=9.09E-01) with PNPLA3-
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464 rs738409 was no longer statistically significant after including insulin as a main effect and 

465 interactor with PNPLA3-rs738409 and the respective metabolic trait in the models 

466 (Supplementary Tables 7-9).  In contrast, the interaction of insulin with PNPLA3-rs738409 

467 remained significant after controlling for BMI, TG, or glucose (pinsulin-BMI= 4.04E-04; pinsulin-TG= 

468 3.24E-06; pinsulin-glucose= 8.40E-08), although the effect sizes and p-values were attenuated.  

469 These results suggest that insulin may account for most of the interaction effect of BMI, glucose, 

470 and TG with PNPLA3-rs738409 on LAivn.  Previously, we reported that PNPLA3-rs738409 

471 explained 2.4% of the variance in hepatic steatosis, estimated by LA, in EA individuals (11).  In 

472 the present study, PNPLA3-rs738409, insulin and their interaction together explain as much as 

473 8% of the variance in hepatic steatosis in the two largest EA cohorts excluding individuals with 

474 diagnosed diabetes.  This suggests that insulin levels/insulin resistance may be a key 

475 contributor to NAFLD.   Excluding heavy drinkers from the conditional analyses did not change 

476 our inferences regarding PNPLA3-rs738409 (Supplementary Table 10-12).  We were not 

477 powered to carry out these analyses for GCKR-rs780094.

478

479 Interaction effect of insulin with PNPLA3 on hepatic steatosis prevalence in FamHS                                          

480 We also assessed the interaction effect of insulin with PNPLA3-rs738409 on hepatic steatosis 

481 prevalence in individuals without diabetes (Figure 1).  In the lowest quartile of insulin levels 

482 (≤ 5.20 mU/L), the percentage of individuals with ≥ 30% liver fat (i.e. moderate to severe hepatic 

483 steatosis) was 23.42%, 35.81%, and 39.47% for CC, CG and GG individuals, respectively.  In 

484 the highest quartile of insulin levels (≥ 13.06 mU/L), the percentage of individuals with ≥ 30% 

485 liver fat was 54.44%, 76.32% and 95.29% for CC, CG and GG individuals, respectively.  The 

486 data show that as insulin levels increase the percentage of individuals with moderate to severe 

487 hepatic steatosis increases.  However, among those with the GG genotype, this effect is 

488 magnified. The difference in the percentage of individuals with moderate to severe hepatic 

489 steatosis increases by 55 percentage points between the lowest and highest insulin quartiles  

490 among those with GG genotype, and increases by 41 percentage points among heterozygotes, 

491 while that difference increases only by 31 percentage points among those with the CC 

492 genotype.  These data suggest that insulin has a strong effect on exacerbating the accumulation 

493 of liver fat in individuals without diabetes who have 1 or 2 G- alleles at PNPLA3-rs738409.  

494

495 DISCUSSION

496 In a sample of 14,751 EA and AA individuals, we found interactions between PNPLA3-rs738409 

497 and insulin, HOMA-IR, BMI, glucose, and TG on LAinv (hepatic steatosis) after adjusting for 
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498 differences in age, sex, and alcohol consumption.  We also found interactions between GCKR-

499 rs780094 and insulin, HOMA-IR, and TG on LAinv.  Conditional analyses in more than 5,000 EA 

500 individuals suggest that insulin, more than glucose, BMI, or TG drive the interaction with 

501 PNPLA3-rs738409 to affect LAinv in non-diabetics.  We did not see significant interactions 

502 between PNPLA3-rs738409 and BMI, TG or glucose once insulin was accounted for, whereas 

503 the reverse was not true.  That is, there was still evidence for an interaction between PNPLA3-

504 rs738409 and insulin even after accounting for the other metabolic traits. These results persist 

505 after accounting for alcohol intake, gender and overall adiposity.  We estimated in FamHS and 

506 FHS that as much as 8% of the variance in hepatic steatosis is explained by PNLPA3-rs738409, 

507 insulin and their interaction in non-diabetic EA individuals. In our previous study, PNPLA3-

508 rs738409 alone explained only 2.4% of hepatic steatosis variance in EA individuals (11).   

509

510 Our findings suggest that non-diabetic individuals with PNPLA3-rs738409-G and high insulin 

511 levels may have a particularly high risk for hepatic steatosis.  The PNPLA3 gene encodes 

512 adiponutrin, an enzyme found on the membrane of lipid droplets within hepatocytes (34).  Its 

513 function may be to break down TG stored in the droplets, helping regulate hepatic TG content 

514 (34, 35).  The missense polymorphism rs738409 (C > G) in PNPLA3 substitutes the amino acid 

515 isoleucine for methionine at residue 148 (I148M), changing the configuration of adiponutrin’s 

516 catalytic site, and rendering the enzyme inactive (10, 36).  The accumulation of the inactive 

517 enzyme on lipid droplets is associated with TG buildup in hepatocytes (36).  Humans and mice 

518 carrying one or two copies of the I148M mutation (rs738409 CG or GG genotype) accumulate 

519 excess TG in lipid droplets, and show more pronounced hepatic steatosis and NAFLD than 

520 those without the mutation(35, 36).  

521

522 It is possible that having high insulin levels in addition to the PNPLA3-rs738409 G allele may 

523 result in a strong synergistic effect that exacerbates the accumulation of fat in the liver of non-

524 diabetic individuals, predisposing them to NAFLD.  Insulin resistance stimulates the hydrolysis 

525 of TG in adipose tissue releasing fatty acids in the bloodstream, which are taken up by the liver 

526 in an unregulated manner promoting the accumulation of TG in hepatocytes (37).  Higher insulin 

527 levels also activate fatty acid synthesis in the liver further driving the formation and storage of 

528 TG (34).  In addition, insulin resistance elevates plasma glucose, which is sequestered by the 

529 liver, phosphorylated, and metabolized to make glycerol and acetyl-CoA, the building blocks for 

530 the synthesis of TG (34,38).  In this context, it is possible that increased lipid synthesis and fatty 

531 acid delivery to the liver may combine with the inability of hepatocytes to dispose of TG from 
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532 lipid droplets, due to the presence of PNPLA3-rs738408-G, and lead to increased hepatic 

533 steatosis.  High insulin levels and PNPLA3-rs738409-G may also be involved in molecular 

534 feedback loops that increase hepatic steatosis.  Insulin resistance and increased insulin levels 

535 augment the activity of transcription factors such as SREBP-1c (39).  These transcription factors 

536 may promote TG synthesis in the liver and up-regulate the expression of PNPLA3 I148M by 

537 binding to its promoter in a positive feedback loop (39).  In this way, insulin and PNPLA3 I148M 

538 may synergize to promote hepatic steatosis. This conjecture is also consistent with the 

539 enhanced risk of steatosis and liver damage as evident by elevated liver enzymes and liver fat 

540 content seen with liver directed long-acting insulin analogues in type 2 diabetics carrying the 

541 PNPLA-3 variant (40). 

542

543 When taken together, results show evidence that insulin and PNPLA3-rs738409 interact to have 

544 an important role in hepatic steatosis, and as a result NAFLD. Consequently, lowering the risk of 

545 hepatic steatosis and its liver complications in individuals with PNPLA3-rs738409-G may be 

546 achieved by reducing insulin resistance and concomitant high levels of insulin.  One way to 

547 accomplish this could be through lifestyle changes that include increased exercise, weight loss, 

548 and better nutrition (41).  For example, decreasing exposure to carbohydrate rich diets, which 

549 adversely increase insulin levels, may mitigate risk (42, 43).  Also, treatments that target insulin 

550 resistance may be of greater benefit for preventing or treating hepatic steatosis than drugs that 

551 simply lower glucose.  For example, insulin sensitizing medications such as pioglitazone may be 

552 an option; it has already been shown to improve NAFLD, although at the expense of weight gain 

553 (44).  More studies are warranted to better understand the effect of the relationship between 

554 insulin levels and PNPLA3-rs738409-G on hepatic steatosis in different populations.

555

556 We also observed significant interactions of PNPLA3-rs738409 with BMI, glucose, and TG.  Our 

557 results support the findings of Stender et al. who reported that high BMI augmented the effect of 

558 PNPLA3-rs738409-G on hepatic steatosis conferring susceptibility to NAFLD (45).  Graff et al. 

559 also showed an interaction effect between PNPLA3-rs738409 and visceral fat content, a 

560 measure of metabolic dysfunction (46).  However, we found that the effect of BMI in 

561 exacerbating hepatic steatosis in the presence of PNPLA3-rs738409-G is attenuated by 

562 controlling for insulin levels in the model. We made the same observation for glucose and TG 

563 suggesting that insulin/insulin resistance in the presence of PNPLA3-rs738409-G may confer 

564 most of the risk for hepatic steatosis on its own or through other metabolic intermediates. 

565
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566 Studies have reported an association between LDL and hepatic steatosis (47, 48).  However, 

567 our study did not find an interaction between any of the genetic variants considered and LDL. 

568 This suggests that for individuals carrying PNPLA3-rs738409-G, reducing insulin levels or 

569 insulin resistance may have a greater effect on reducing the risk of hepatic steatosis than 

570 reducing LDL. 

571

572 In addition to PNPLA3, we found that GCKR interacts with insulin resistance to increase 

573 susceptibility to hepatic steatosis.  GCKR encodes the glucokinase regulatory protein, which 

574 has an important role in glucose metabolism(49).  The glucokinase regulatory protein binds to 

575 the glucose metabolizing enzyme, glucokinase, to inhibit its role in the uptake and storage of 

576 dietary glucose via stimulating de novo lipogenesis(49).  The variant rs780094/rs12060326 in

577 the glucokinase regulatory protein reduces its ability to inhibit glucokinase (49).  This results in 

578 an increased activity of glucokinase in the liver, which promotes de novo lipogenesis.  When this 

579 mutation is combined with insulin resistance, it may amplify de novo lipogenesis to promote 

580 hepatic steatosis. We did not replicate the interaction between TM6SF2 and BMI reported by 

581 Stender et al. (45); however, our results show a similar trend.  The interaction was borderline 

582 non-significant in the combined ancestry meta-analyses (Bint= -0.05, p=5.89E-02).  Some 

583 differences between Stender et al. and this study may explain why we did not detect a 

584 statistically significant interaction.  First, Stender et al. used proton magnetic resonance 

585 spectrometry to measure steatosis, which is a more sensitive measure than computed 

586 tomography.  Second, they used the genotyped missense variant, rs58542926; we used the 

587 proxy, imputed variant, rs2228603.  The two variants are in high linkage disequilibrium 

588 (D’=0.926, r2=0.798).  Third, Stender et al. combined the heterozygotes (EK), and homozygotes 

589 (KK), and compared them to those without the risk allele (EE).  These three differences may 

590 have increased their power to see the weak effect they reported.

591

592 Our study has several limitations.  It is a cross-sectional design that cannot prove temporal 

593 causality of insulin exposure on increasing hepatic steatosis.  Because we used population-

594 based cohorts that lacked biopsy information, we do not know whether we included individuals  

595 with advanced stages of NAFLD such as nonalcoholic steatohepatitis, fibrosis, or cirrhosis. We 

596 also could not differentiate peripheral insulin resistance from hepatic insulin resistance with our 

597 data.  Moreover, even though in euglycemic individuals HOMA-IR was highly correlated to a 

598 single value of insulin (r2=0.98), we do not have direct measures of dynamic glucose regulation.  

599 Therefore, functional studies are needed to gain more insight into the biological processes 
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600 driving our observations.  Finally, our study did not include the genetic variant MBOAT7 

601 (rs641738), which has been associated with hepatic fat accumulation (50).  In our prior 

602 association analyses (11), we did not see an association between MBOAT7 and LA 

603 (Beta= -0.03, p=0.15).  Because our inclusion criteria for variants was that they needed to be 

604 associated with LA, and we could not substantiate the association of MBOAT7 in our sample, 

605 we excluded it. 

606

607 In conclusion, to our knowledge, this is the largest study examining the interaction between 

608 multiple metabolic traits and four genetic variants on hepatic steatosis in multiple cohorts 

609 representing two different ancestry groups.  Our findings suggest that insulin levels/insulin 

610 resistance more than other correlated metabolic traits including glucose, TG, and BMI interact 

611 with genetic variants in PNPLA3 to promote hepatic steatosis.  Through conditional analyses, 

612 we show that insulin levels explain the interactions observed between PNPLA3-rs738409 and 

613 BMI, as well as the interactions between PNPLA3-rs738409 and glucose and TG, in almost 

614 5,000 nondiabetic, EA individuals.  Our work suggests that improving insulin resistance and 

615 reducing insulin levels in pre-diabetic individuals carrying fatty liver promoting alleles at 

616 PNPLA3-rs738409 may offer preferential benefit and mitigate their risk of developing NAFLD.  

617 Although PNPLA3 genotype information is not currently used to make clinical decisions, it may 

618 be helpful in the future not only to risk stratify individuals, but also to tailor their treatment.  Our 

619 work contributes to the understanding of the pathophysiology of NAFLD, and informs further 

620 interventional research to better diagnose and/or treat individuals with increased risk of NAFLD.  

621
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781 Figure 1.  Shown is the percentage of non-diabetic individuals in FamHS with ≥ 30% fat in the 

782 liver (moderate to severe hepatic steatosis) per PNPLA3-rs738409 genotype in the lowest and 

783 highest quartile of insulin levels.  As the level of insulin increases, the percentage of individuals 

784 with ≥ 30% fat in the liver increases more markedly with increasing copies of the G risk allele 

785 (non-parallel lines show interaction).  Among those with the GG genotype, the difference (∆) in 

786 the percentage of individuals with moderate to severe liver fat increases by 55 percentage 

787 points between the lowest and highest insulin quartiles.  In contrast, this difference is lower 

788 among those with the CG genotype (41%), and CC genotype (31%).A
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Table 1. Demographic and Characteristics of Study Participants in each Cohort by Ancestry 

 AGES Amish CARDIA FamHS FHS MESA CARDIA FamHS GENOA MESA 

Demographic  European Ancestry (11,870) African Ancestry (2,881) 

N=14,751  2,865 541 

 

1,282     2,684 2,966 1,532 642 620 560 1,059 

Age 76.38 ± 5.46 56.84 ± 12.81  50.74 ± 3.33     57.14 ± 13.28 50.54 ± 10.14 63.05 ± 10.49 49.47 ± 3.86 53.35 ± 10.82 68.86 ± 8.01 63.17 ± 10.00 

Men (6,444) 1,139 (40%) 252 (47%)   595 (46%)    1,207 (45%)  1,454 (49%) 746 (49%) 233 (36%) 212 (34%) 141 (25%) 465 (44%) 

Women (8,307) 1,726 (60%) 289 (53%)   687 (54%)    1,477 (55%)  1,512 (51%) 786 (51%) 409 (64%) 408 (66%) 419 (75%) 594 (56%) 

Characteristics 

Liver Attenuation (HU)
¥
     59.22 ± 8.64 63.05 ± 7.76  55.05 ± 12.28   59.14 ± 11.19 65.40 ± 9.83  59.33 ± 12.43 56.38 ± 10.86 59.52 ± 9.23 60.10 ± 9.39     61.18 ± 9.06 

Insulin (mU/L) 9.22 ± 6.39 11.75 ± 6.22       9.26 ± 6.77      9.88 ± 7.16 

 

9.05 ± 7.38 

 

  8.90 ± 4.94 

 

11.60 ± 8.29  13.02 ± 10.22 8.30 ± 5.73    9.61 ± 5.53 

HOMA-IR
ょ
 2.31 ± 1.76  2.69 ± 1.63       2.20 ± 1.77      2.37 ± 1.87 

 

2.32 ± 2.31 

 

  1.99 ± 1.27 

 

2.75 ± 2.14 3.14 ± 2.69 2.02 ± 1.46    2.19 ± 1.41 

Glucose (mmol/L) 5.49 ± 0.50  4.94 ± 0.52 

 

      5.18 ± 0.50      5.25 ± 0.53 5.47 ± 1.12 

 

  4.90 ± 0.58 

 

5.17 ± 0.54 5.25  ± 0.57 5.37 ± 0.50    5.03 ± 0.59 

BMI (kg/m
2
)      27.00 ± 4.49  27.72 ± 4.85    28.50 ± 6.18 

 

     28.86 ± 5.69   27.51 ± 5.22 

 

 28.06 ± 5.05  31.94 ±7.48 32.71 ± 7.37 32.71 ± 7.27     29.95 ± 5.77 

        Obese
ゆ
   618 (22%) 

c(((22%) 

  155 (29%)    425 (33%)           972 (36%) 

 

 769 (26%) 

 

  449 (29%)  352 (55%) 377 (61%) 332 (59%)   465 (44%) 

WHR (cm)
§
 nval 0.87 ± 0.07 

 

  0.85 ± 0.10        0.91 ± 0.10 

 

0.94 ± 0.08   0.93 ± 0.09 0.85 ± 0.08 0.92 ± 0.07 0.89 ± 0.08   0.92 ± 0.08 

TG (mg/dL) 106.48 ± 59.06 90.42 ± 57.45 121.64 ± 85.07   144.03± 94.05 126.11 ± 88.07  136.55 ± 99.31 101.55 ± 73.24 111.82 ± 80.09 100.28 ± 62.67   103.82 ± 60.61 

LDL (mg/dL) 146.84 ± 35.73 141.31± 38.66  116.27 ± 30.15 112.9 ± 34.22 117.70 ± 31.71 

 

120.24 ± 30.42 112.59 ± 33.83 115.39 ± 36.05 123.85 ± 33.59 118.39 ± 32.87 

HDL (mg/dL) 61.75 ± 17.31 57.05 ± 15.37    58.43 ± 18.42  48.82 ± 14.37   54.16 ± 16.77 

 

 51.68 ± 15.59 57.59  ± 16.70   53.55 ± 15.41 57.31 ± 16.52 52.39 ± 15.14 

Alcohol (drinks/week) 1.09 ± 2.37 nval     5.73 ± 10.07 2.98 ± 7.10 

 

5.39 ± 7.88 

 

5.06 ± 8.40 3.86 ± 10.60 3.24 ± 9.45 0.28 ± 1.18  3.86 ± 8.89 

      Heavy drinkers* 17 (0.59%) nval    470 (37%) 152 (6%) 

 

424 (14.3%) 

 

335 (22%) 144 (22%)  69 (11%) 0  

 

  139 (13%) 

 

Statistics are presented as mean ± standard deviation (SD), or as n (%). The table includes individuals with liver attenuation and genetic information from each cohort  

that were included in analyses. LA and metabolic traits were not adjusted for covariates. The sample size for each trait varied from N depending on the data available. 

Summary statistics for fasting insulin, HOMA-IR and fasting glucose excludes diabetics; fasting LDL excludes statin users. ¥ Raw liver attenuation measured in 

Hounsfield units. ‡ Calculated as [fasting insulin (mU/L) x fasting glucose (mmol/L)/22.5]; † Defined as BMI ≥ 30 kg/m2
; § not adjusted for BMI; nval= not available in 
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cohort. *Defined as ≥ 8 drinks per week for women and ≥ 15 drinks per week for men. The Amish do not consume alcohol.  Units in the table are HU=Hounsfield units; 

mU/L=milliunits per liter; mmol/L=millimoles per liter; kg/m
2
= kilograms divided by height in meters squared; cm=centimeters; mg/dL=milligram per deciliter. 

 

 

Table 2. Meta-analyses results for interactions between four SNPs and inverse normal-transformed residuals of metabolic traits on LAivn in combined ancestries. 

 rs738409 rs780094* rs2228603* rs12137855 

 

Gene Chr 
Alleles 

(Ref/O) 

 

Ref AF 

 

Gene Chr 
Alleles 

(Ref/O) 
Ref AF Gene Chr 

Alleles 

(Ref/O) 
Ref AF Gene Chr 

Alleles 

(Ref/O) 
Ref AF 

 
PNPLA3 22 G/C 0.24 GCKR 2 T/C 0.39 

NCAN/ 

TM6SF2 
19 T/C 0.13 LYPLAL1 8 C/T 0.79 

 (SNP x Metabolic Traits) 

Metabolic 

Traits 
βint SE P-value N βint SE P-value N βint SE P-value N βint SE P-value N 

 Insulin 

 

-0.11 0.02 4.79E-14 12,651 -0.04 0.01 4.57E-04 12,651 -0.06 0.03 4.37E-02 12,651 -0.02 0.02 1.55E-01 12,651 

 HOMA-IR -0.12 0.02 4.68E-15 12,554 -0.04 0.01 1.32E-03 12,554 -0.06 0.03 3.63E-02 12,554 -0.02 0.02 1.38E-01 12,554 

 Glucose -0.05 0.02 1.26E-03 12,742 -0.01 0.01 4.37E-01 12,742 -0.06 0.03 7.41E-02 12,742 -0.02 0.02 1.91E-01 12,742 

 BMI -0.08 0.01 8.13E-08 14,693 -0.03 0.01 6.31E-03 14,693 -0.05 0.03 5.89E-02 14,693 -0.02 0.01 8.18E-01 14,693 

 WHRadjBMI -0.05 0.02 7.59E-03 10,051 -0.04 0.02 1.32E-02 10,051 -0.08 0.03 1.26E-02 10,051 0.01 0.02 7.76E-01 10,051 

 TG -0.05 0.02 2.95E-03 14,551 -0.04 0.01 4.17E-03 14,551 0.00 0.03 9.77E-01 14,551 -0.03 0.02 5.75E-02 14,551 

 LDL 0.00 0.02 7.94E-01 12,123 0.00 0.01 9.33E-01 12,123 -0.06 0.03 5.50E-02 12,123 0.02 0.02 2.29E-01 12,123 

 HDL -0.04 0.02 1.41E-02 14,543 0.03 0.01 3.72E-02 14,543 0.00 0.03 9.55E-01 14,543 -0.01 0.02 3.72E-01 14,543 

 

Chr, Chromosome; Ref/O, Reference/Other allele (reference allele is the effect allele of each SNP); Ref AF, Reference allele frequency; βint, interaction effect size; 

SE, standard error.  P-values that reached significance threshold (P≤ 4.17E-03) are in bold; N is the highest sample size in meta-analyses. *rs780094 is in LD 

(r
2
=0.93) with rs1260326, a functional missense variant in GCKR; *rs2228603 is in LD (r

2
=0.79) with rs58542926, a functional missense variant in TM6SF2. 
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