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Coronary heart disease (CHD) and stroke rank among the leading causes of death in the
industrialized world 1 and a significant genetic component underlies both outcomes. These
clinical events are often preceded by the development of subclinical atherosclerosis,
typically a thickening of the artery wall due to deposition of cholesterol rich material in the
arteries that supply blood to major organs.2 Generalized atherosclerosis results from
endothelial dysfunction, inflammation, abnormalities in lipoprotein metabolism 3,
coagulation and fibrinolysis. 4
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Measures of subclinical atherosclerosis, disease that occurs before symptoms are noted, are
predictive of incident clinical events and can be detected non-invasively and with reasonable
precision in population samples using high resolution ultrasound techniques. Both cIMT and
plaque, reflecting a thickening of the carotid artery wall or the presence of large irregular
arterial wall deposits, respectively, are established measures of subclinical atherosclerotic
disease. While there may be variation in carotid ultrasound measurement techniques,
multiple independent studies have established consistent association of carotid phenotypes
with coronary events and stroke in prospective studies of young, middle-aged, and older
adults 5,6 and recent consensus prevention guidelines cite cIMT as a potentially useful
measure for prediction.7 While there is a correlation between common cIMT and carotid
plaque, common cIMT reflects carotid artery wall thickening that may result from multiple
vascular etiologies including hypertension and atherosclerosis, whereas carotid plaque is an
indicator of the discrete occurrence of carotid atherosclerosis. Several recent studies provide
evidence that carotid plaque is a better predictor of future cardiovascular disease risk than
common cIMT. 8–10

Numerous family studies established consistent evidence for moderate heritabilities for
common cIMT, internal cIMT and carotid plaque (Supplementary Table 1). However,
candidate gene studies have not found consistent associations between single nucleotide
polymorphisms (SNPs) and cIMT,11 and genome-wide linkage scans completed to date have
revealed only suggestive regions for common cIMT.12,13 We performed a GWAS of three
measures of subclinical carotid atherosclerosis – common cIMT, internal cIMT, and plaque–
in a sample of up to 31,211 participants from nine population-based studies that performed
genome-wide genotyping with commercial SNP arrays and imputed to the approximately
2.5 million autosomal SNPs in the Phase II HapMap CEU reference panel. In addition, we
followed-up our discovery findings in a second stage that included 11,273 participants from
7 independent studies.

Results
The cross-sectional discovery genome-wide analysis of carotid artery phenotypes included
31,211 participants from nine community-based studies whose mean age ranged from 44 to
76 years. Characteristics of the samples are presented in the Supplementary Note. In the
studies in which all three carotid measures were available, the correlations between common
cIMT and plaque ranged from 0.27 to 0.39, and between common cIMT and internal cIMT,
from 0.36 to 0.67 (Supplementary Table 2).

The a priori threshold for genome-wide significance was 5×10−8, and a p-value > 5×10−8

but <4×10−7, corresponding to not more than one expected false positive finding over 2.5
million tests, was considered suggestive evidence for association in our analyses.

Figure 1A provides a plot of −log10 (p-values) for the associations of the approximately 2.5
million SNPs with common cIMT by chromosome and position for the meta-analysis of the
nine discovery studies. P-values from the meta-analysis of plaque (n=25,179 participants)
and internal cIMT (n=10,962) are presented according to their genomic positions in Figure
1B and Supplementary Figure 1, respectively. Overall, from the discovery meta-analysis of
common cIMT and plaque, we carried forward 3 genome-wide significant SNPs and 5
suggestive SNPs to the second stage. Our second stage included 11,273 participants from
seven community-based studies, six of which provided results for common cIMT (total
N=10,403) and three of which provided results for plaque (N=6,013). Characteristics of the
participants in these studies are shown in the Supplementary Note.
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Table 1 presents the genome-wide significant association results for the discovery, second
stage, and combined meta-analyses for common cIMT and plaque, respectively. We show
the discovery GWAS results for the 100 kb region surrounding the signal SNPs for common
cIMT and plaque along with the recombination rates and the known genes in that region in
Figures 2 and 3. Figures 4 and 5 show the study-specific findings from the combined meta-
analyses of common cIMT and plaque, respectively. Results for the suggestive loci in the
meta-analyses of common cIMT and plaque are shown in the Supplementary Table 3 and
Supplementary Figures 2–5.

Common cIMT
For common cIMT, 3 independent loci achieved our genome-wide significance threshold
(p<5×10−8) in the combined meta-analysis.

The strongest association was for rs11781551, found on 8q24 approximately 385 kb from
ZHX2, where the A allele (allele frequency [AF]=0.48), was associated with lower common
cIMT (β=−0.0078, p= 2.4×10−11), i.e. a 0.8% lower mean common cIMT per copy of the A
allele. The second association was for rs445925, located 2.3 kb from APOC1 on 19q13, a
region that also includes APOE, APOC2, and APOC4. The G allele (AF=0.11) was
associated with lower common cIMT (β=-0.0156, p= 1.7×10−8). The third association was
for rs6601530, located within the PINX1 gene on 8q23.1. Each copy of the G allele (AF =
0.45) was associated with higher common cIMT (β=0.0078, p= 1.7×10−8). We also
identified a suggestive locus, marked by rs4712972 near the SLC17A4 gene on 6p22, where
the A allele was associated with higher common cIMT (β=0.0099, p= 7.8×10−8).

While our genome-wide significant and suggestive SNPs from combined meta-analyses for
common cIMT explained a small proportion of the trait variance (up to 1.1%), we further
constructed an additive genetic risk score (0–8 alleles) comprised of the number of common
cIMT risk alleles at the four loci. In the discovery samples, the additive risk score showed
graded increasing association with common cIMT across all studies with an average
increase of 9.5% in common cIMT from the lowest (0–2) to the highest (6–8) risk category
(Supplementary Figure 6).

Plaque
In analysis of carotid artery plaque, 2 independent loci achieved the genome-wide
significance threshold (p<5×10−8) in the combined meta-analysis.

The most significant signal was observed for rs17398575, situated 96.5 kb from the PIK3CG
gene on 7q22. Per copy of the T allele (AF=0.25), we observed an 18% increased odds of
presence of plaque (p=2.3×10−12). The second signal was centered at rs1878406, located 8.5
kb from EDNRA on 4q31. Each copy of the T allele (AF=0.13) was associated with a 22%
increased odds of the presence of plaque (p= 6.9×10−12). Furthermore, two SNPs showed
suggestive evidence for association in our combined meta-analysis. The first suggestive
locus was rs17045031 on 3p13 where each copy of the A allele was associated with
decreased odds of the presence of plaque (p= 1.0×10−7). Our second suggestive locus was
rs6511720, near LDLR on 19p13. Per copy of the T allele we observed a decreased odds of
the presence of plaque (P=3.8×10−7).

For both cIMT and plaque, secondary discovery genome-wide meta-analyses conditioned on
the genome-wide significant and suggestive SNPs from the combined meta-analyses did not
reveal any additional associations.
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Internal cIMT
No SNP achieved our significance threshold for follow up in the discovery analyses of
internal cIMT. Results for internal cIMT SNPs with p <1.0 × 10−5 are shown in
Supplementary Table 4.

Cross-phenotype comparisons
Supplementary Table 5 shows the results for the genome-wide significant and suggestive
SNPs from our combined meta-analyses for common cIMT and plaque across the three
carotid phenotypes. The directions of association were generally consistent and three SNPs,
rs445925 (APOC1) from the common cIMT analysis and rs17398575 (PIK3CG) and
rsrs1878406 (EDNRA) from the plaque analysis, were associated with all three phenotypes
(p < 0.05/8/2 = 0.003) in cross-phenotype comparisons.

Associations with coronary artery disease
We investigated the genome-wide significant and suggestive SNPs from our combined
meta-analyses for common cIMT and plaque for their potential associations with coronary
artery disease (CAD) in the CARDIoGRAM Consortium (Table 2). Two SNPs from our
plaque analysis had a p-value for association with CAD less than 0.006 (0.05/8 tests). The
first, rs6511720, near LDLR, where the G allele was associated with both higher plaque risk
in our study and higher CAD risk (p=0.0002); and rs1878406, near EDNRA where the C
allele was associated with lower risk of plaque and lower risk of CAD (p=2×10−6). One
SNP from common cIMT analysis, rs445925 near APOC1, showed a suggestive association
with CAD with the same allele (A) being associated with higher common cIMT and higher
CAD risk (p=0.02). Another SNP identified in the plaque analysis, rs17045031 near LRIG1,
showed a suggestive association with CAD, with the G allele associated with both lower
odds of plaque and lower risk of CAD (p=0.04).

Conversely, none of SNPs reported to be associated with coronary artery disease in the
CARDIoGRAM consortium 14 had a significant association (i.e., a p-value less than
0.00072, a conservative Bonferroni correction for 23 tests across three phenotypes) in our
discovery meta-analyses of common cIMT, internal cIMT, or plaque (Supplementary Table
6).

Discussion
In this meta-analysis of G WAS data from nine studies of common cIMT and seven studies
of plaque, we identified genome-wide significant associations between 3 regions and
common cIMT and between 2 regions and the presence of carotid plaque in over 40,000
participants of European ancestry. Interestingly, EDNRA one of our genome-wide
significant regions in the combined meta-analysis of plaque was related to multiple carotid
phenotypes and was also associated with coronary artery diseases in the recent large meta-
analysis by the CARDIoGRAM Consortium.

Three SNPs emerged as genome-wide significant from our combined meta-analysis of
common cIMT. The strongest association, on chromosome 8 (rs11781551), is an intergenic
SNP located 385 kb from the ZHX2 gene. Members of this gene family are nuclear
homodimeric transcriptional repressors that interact with the A subunit of nuclear factor-Y
(NF-YA) and contain two C2H2-type zinc fingers and five homeobox DNA-binding
domains. Little information about these proteins exists regarding cardiovascular disease or
population studies.
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A second association, on 19q13 (rs445925), fell upstream of the APOC1 gene. While this
region has been of interest for its role in neurological genetics because of the APOE gene, it
is also been frequent candidate gene for cardiovascular disease traits. 15 Although some
previous studies have found associations of variation at the APOE locus and common
cIMT,16 among 4 of our discovery studies that had independently measured the APOE
epsilon variants, the correlation between rs445925 and the e4 allele was less than 0.05.
Further, models that included both the APOE e4 and the APOC1 variant indicated that the
APOE gene was not associated with common cIMT in these studies (Supplementary Table
7), while the APOC1 variant still showed a significant association with common cIMT.
While APOE variants have been implicated in cases of familial dyslipidemia and premature
atherosclerosis and in recent genome-wide association studies with variation in multiple
lipoprotein measures,17 our results suggest that APOC1 is the primary variant of interest for
carotid traits.

The third association (rs6601530) was located in an intron of the Pin2-interacting protein 1
(PINX1) gene. The protein, a telomerase inhibitor 18 that plays a role in chromosomal
segregation in mitosis,19 has been investigated in relation to cancers, but was not considered
a candidate gene for cardiovascular phenotypes.

The region on chromosome 6 marked by rs4712972, which includes the SLC17A4,
SLC17A1, and SLC17A3 genes showed suggestive evidence for association with common
cIMT in our combined meta-analysis. This region may merit further investigation as recent
genome-wide association studies have implicated this region with uric acid levels.20,21

Although high uric acid levels have been associated with cardiovascular disease and all-
cause mortality,22 the contribution to atherosclerotic vascular disease remains
controversial.23

Plaque associations
For plaque, two regions were genome-wide significant in our combined meta-analysis. The
first region was within 100kb of the PIK3CG gene, which encodes one of the pi3/pi4-kinase
family of proteins. These proteins are important modulators of extracellular signals,
including those elicited by E-cadherin-mediated cell-cell adhesion, which plays an important
role of endothelin in maintenance of the structural and functional integrity of epithelia. The
fact that this region was reported as a top hit in a recent GWAS of both platelet volume 24

and aggregation 25 suggests pleiotropy and highlights the interconnectedness of multiple
cardiometabolic traits.

The second genome-wide significant region was near the EDNRA gene. Because of the role
of endothelin as a potent vasoconstrictor, the endothelin receptor, type A is a target for
pharmacologic treatments to reduce blood pressure.26 In addition, variation in the gene was
associated with blood pressure 27, atherosclerosis 28 and cardiovascular disease endpoints 29

in candidate gene studies.

Two more regions showed suggestive evidence for association in our combined meta-
analysis for plaque. The first region, near the LDLR gene is a particularly interesting
candidate for subclinical atherosclerosis because of its role in familial hypercholesterolemia
and its appearance in recent genome-wide association studies for lipid traits 30–33 and
myocardial infarction. 14,34 Notably, the LDLR SNP recently reported to be associated with
MI (rs1122608) is located 38 kb away and is in modest LD (r2=0.2 in HapMap CEU) with
the signal SNP (rs6511720) in our analysis that also showed an association with CAD in the
CARDIoGRAM consortium. The second was in the vicinity of LRIG1, which negatively
regulates growth factor signaling and is involved in the regulation of epidermal stem cell
quiescence.
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Interestingly, we found three loci (APOC1, PIK3CG, and EDNRA) that were associated with
all three carotid phenotypes. Among these, the EDNRA locus was also significantly
associated with coronary artery disease in the recent large meta-analysis by the
CARDIoGRAM Consortium. These associations may provide important insights into the
pathophysiological mechanisms relating the genes to atherosclerosis and subsequent
coronary artery disease. In particular, the concordance of association with SNPs in EDNRA
with both carotid plaque and CHD suggests a common etiology for subclinical and clinically
apparent disease that warrants further investigation.

The strengths of the current study include the large sample size, the population-based
designs, the collaboratively designed pre-specified analysis plan, and the high quality of
both genotyping and phenotyping. Further, our ability to relate our findings to the outcome
of CAD in a large independent meta analysis provides important additional context to our
results. These associations are unlikely to be due to population stratification since the
discovery sample was restricted to whites of European origin and was also investigated for
global latent population substructure.

The study also has limitations. A single cross-sectional IMT assessment was used in all
studies and ultrasound protocols varied across participating studies. For example, plaque
definition included the presence of any plaque in most studies and stenosis greater than 25%
in others. The heterogeneity of measurement techniques may have compromised our ability
to detect small associations. Despite this heterogeneity, the ability to detect consistent
genetic associations for several carotid measures suggests that additional signals may be
discovered in future studies utilizing a larger sample size or a higher resolution technique
such as magnetic resonance imaging. Further, few studies had internal cIMT measures since
these are more difficult to obtain than common cIMT measurements and thus limited our
ability to discover associations with this phenotype. Although our sample size was
reasonably large, we still had limited power to detect associations with small effect sizes.
Genome-wide association studies are known for revealing associations with common
variants and may miss rare variants not covered by the commercial genotyping arrays. For
instance, the sparse coverage of the APOC1 and LDLR gene regions resulted in varying
imputation quality and a lower effective sample size for the analysis of these two regions.

Because we did not conduct follow-up fine mapping of the results, and because some SNPs
were distant from known genes, it is likely that the identified SNPs are not causal variants,
but, instead, may be in linkage disequilibrium with variants that were not analyzed. Because
some of our associations attained genome-wide significant p-values only in the combined
meta-analysis, confirmation of our findings in other populations and further exploration of
these genomic regions with dense genotyping, expression, and translational studies will be
required to better understand the role of these genes in subclinical atherosclerotic disease.

In summary, our meta-analysis of GWAS data from nine community-based studies has
revealed 5 new loci for common cIMT and plaque. These loci implicate LDL metabolism
(APOC1), endothelial dysfunction (EDNRA), platelet biology (PIK3CG), and telomere
maintenance (PINX1). Two of our identified loci are also associated with coronary artery
disease in the recent large meta-analysis by the CARDIoGRAM Consortium. Exploring the
molecular, cellular and clinical consequences of genetic variation at these loci may yield
novel insights into the pathophysiology of clinical and subclinical cardiovascular disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Genome-wide Association Studies of Carotid Intima Media Thickness and
Plaque: Meta-analysis from the CHARGE Consortium

Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are
established measures of subclinical atherosclerosis that each predict future cardiovascular
disease events. We conducted a meta-analysis of genome-wide association data in 31,211
participants of European ancestry from nine large studies in the setting of the Cohorts for
Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. We then
sought additional evidence to support our findings among 11,273 individuals using data
from 7 additional studies. In the combined meta-analysis, we identified three genomic
regions associated with common cIMT and two different regions associated with the
presence of carotid plaque (p <5×10−8). The associated SNPs mapped in, or near, genes
related to cellular-signaling, lipid metabolism, and blood pressure homeostasis and two of
the regions were associated with coronary artery disease (p <0.006) in the CARDIoGRAM
consortium. Our findings may provide new insight into pathways leading to subclinical
atherosclerosis and subsequent cardiovascular events.
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Figure 1. A–B: Genome-wide Manhattan plots for common cIMT and plaque
Plots show the individual p-values (based on discovery meta-analysis) against their genomic
position for common carotid IMT (Figure 1A), the presence of plaque (Figure 1B). Within
each chromosome, shown on the x-axis, the results are plotted left to right from the p-
terminal end. The dashed line indicates the threshold for follow-up, p<4 ×10−7 and the solid
line indicates the threshold for genome-wide significance, p<4 ×10−8. The nearest genes are
indicated above points that surpassed our genome-wide significance threshold; genes that
are greater than 100 kb from the signal SNP are indicated in parentheses.
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Figure 2. Regional plots for common carotid IMT SNPs
Plots are centered on the most significant SNP at locus along with the meta-analysis results
for SNPs in the 100kb region surrounding it. All SNPs are plotted with their discovery meta-
analysis p-values against their genomic position, with the most significant SNP in the region
indicated as a diamond and other SNPs shaded according to their pairwise correlation (r2)
with the signal SNP. The light blue line represents the estimated recombination rates. Gene
annotations are shown as dark green lines.
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Figure 3. Regional plots for plaque SNPs
Plots are centered on the most significant SNP at each locus along with the meta-analysis
results for SNPs in the 100kb region surrounding it. All SNPs are plotted with their
discovery meta-analysis p-values against their genomic position, with the most significant
SNP in the region indicated as a diamond and other SNPs shaded according to their pairwise
correlation (r2) with the signal SNP. The light blue line represents the estimated
recombination rates. Gene annotations are shown as dark green lines.
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Figure 4. Forest plots for common carotid IMT SNP associations
Plots show the study-specific association estimates (β) and 95% confidence intervals for the
nine discovery and second stage studies, presented as bars. The scale is ln(cIMT). The
association estimate and confidence interval for the meta-analysis combining discovery and
second stage results is presented as a diamond. Blank spaces indicate occasions in which a
particular study was not able to provide results for a given SNP.
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Figure 5. Forest plots for plaque SNP associations
Plots show the study-specific association estimates (OR) and 95% confidence intervals for
the nine discovery and second stage studies, presented as bars. The association estimate and
confidence interval for the meta-analysis combining discovery and second stage results is
presented as a diamond. Blank spaces indicate occasions in which a particular study was not
able to provide results for a given SNP.
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