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In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-
modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for 
both inter- and intrafraction tumor localization, and hypofractionated delivery 
techniques such as stereotactic body radiation therapy (SBRT), have evolved 
tremendously. This review article focuses on only one part of that evolution, 
electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a 
growing technology in radiation oncology and, as such, the clinical applications are 
limited, the expense is high, and the reimbursement is insufficient to cover these 
costs. At the same time, current experience with electromagnetic tracking applied to 
various clinical tumor sites indicates that the potential benefits of electromagnetic 
tracking could be significant for patients receiving radiation therapy. Daily use of 
these tracking systems is minimally invasive and delivers no additional ionizing 
radiation to the patient, and these systems can provide explicit tumor motion data.  
Although there are a number of technical and fiscal issues that need to be addressed, 
electromagnetic tracking systems are expected to play a continued role in improv-
ing the precision of radiation delivery.  
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I. IntroductIon

Electromagnetic tracking has been in use for a number of medical applications including 
image-guided interventional therapy and surgery, endoscopic navigation and more recently, 
localization and tracking systems for prostate radiotherapy. For the past 15 years, development 
of electromagnetic tracking systems has grown from an early need in surgical navigation to a 
more recent need for precision radiotherapy. Early image-guided surgery and radiation therapy 
systems relied on optical tracking. Optical tracking systems have limitations, however, that have 
led to increased interest in electromagnetic tracking systems for medical use. Optical tracking 
systems require a line-of-sight between light-emitting diodes and tracking system cameras, 
whereas electromagnetic systems do not. Electromagnetic systems can be used in computer-
aided medical procedures by defining position and orientation for guidewires in interventional 
radiology or catheter placement for bronchoscopic procedures.  

Several electromagnetic tracking systems have been developed for image-guided surgery 
using wired transponders such as the Aurora (Northern Digital Inc., Waterloo, Ontario) and 
microBIRD systems (Ascension Technology Corporation, Burlington, VT). Another similar 
system has been developed by SuperDimension Inc. (Minneapolis, Minnesota) in order to 
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guide endoscopic tools and catheters down the pulmonary tract so as to provide clinicians the 
ability to navigate to lesions and biopsy for later diagnosis. This electromagnetic technology 
has also been used in radiation oncology to guide the implantation of radiosurgical markers or 
fiducials in and around peripheral lung lesions.(1)   

At the same time, the need for accurate daily targeting during a course of external beam 
radiotherapy in the treatment of localized malignancies has also led to advancements in elec-
tromagnetic tracking systems. These electromagnetic tracking systems provide the clinician 
with previously unavailable real-time motion information for targets that may have substantial 
motion. Currently, the most prevalent use of electromagnetic tracking technology in radiation 
therapy is with the localization and tracking system offered through Calypso Medical Technolo-
gies (Calypso Medical Technologies, Inc. Seattle, WA). This system is currently approved by 
the Food and Drug Administration (FDA) for use in prostate and post-prostatectomy prostate 
bed radiation therapy. Other similar electromagnetic tracking systems for linear accelerator 
radiotherapy have been developed by Micropos Medical (Sweden) and Northern Digital Inc. 
(Waterloo, Canada), but these are investigational or prototype devices and are not cleared 
for sale in the United States for use as tumor tracking devices in radiation oncology. We will 
discuss their theory of operation, as well as the forecast for electromagnetic tracking including 
innovations, clinical indications, and challenges within radiation oncology.

 
II. currEnt StAtE oF ELEctroMAGnEtIc trAcKInG

Literature on the use of electromagnetic tracking for radiation therapy was first published in 
1992 by Houdek et al.(2) for stereotactic radiotherapy localization using a wired transponder 
sensor. This system had a sensor attached to the stereotactic halo and a source to generate 
the electromagnetic field, which was attached to an accessory mount. More recently in 2000, 
Sieler et al.(3) reported on the development of a magnetic tracking technique, TULOC, for the 
improvement of the precision of proton radiotherapy. Their paper discussed that implantable 
sensors would be used to continuously monitor patient position during treatment. These sensors 
were miniaturized induction coils made of insulated copper wire (diameter 20 μm) wound on 
a piece of soft iron. The sensors had outer dimensions of 8 mm × 0.8 mm diameter. Currently, 
information on two electromagnetic tracking systems can be found — a wired and a wireless 
system — both used for prostate radiotherapy. 
      
A. Wired system – Micropos rayPilot
The Micropos system is an active nonionizing system intended as a stand-alone unit and needs 
no additional modalities such as X-rays for determining position of the implant and target.(4) 
With this system, a sterile dilation catheter is inserted into the penis. The internal wired antenna 
(implant) is located at the tip of the catheter and connected to the control unit, which converts 
the signal for computer evaluation (standard PC computer). The external antenna is the signal-
receiving component and consists of an integrated antennae array; it is also connected to the 
control unit. This external antenna is located between the patient and the couch. Kindblom et 
al.(4) report the resolution of the tested system in the laboratory was 0.8 ± 0.6 mm (mean ± 
SD). In addition to position tracking with the internal antennae, the Micropos device houses 
a radiation detector in order to provide an in vivo dose measuring using a device such as a 
MOSFET. Figure 1 shows a representation (Fig. 1(a)) and a schematic drawing (Fig. 1(b)) of 
the Micropos RayPilot system. This system has been developed only for investigational use and 
is not yet commercially available. Prior to its clinical use, several issues need to be addressed. 
First, a reliable and safe technique for transperineal implantation of the wired transponder in the 
prostate must be developed. Secondly, transponder stability within implanted tissue throughout 
the treatment course must be demonstrated. Upon completion of the radiotherapy treatment 
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course, the transponder implant is removed and thus will not interfere with any future imaging 
needs, such as magnetic resonance imaging.  

B.  Wireless system – calypso Medical 
The Calypso Medical 4D localization system (Calypso System) utilizes radiofrequency (RF) 
for wireless tracking during radiation therapy. Three small (8 mm length × 2 mm diameter) 
beacon transponders are implanted in or near the target. Each electronic transponder consists of 
an AC electromagnetic resonance circuit encapsulated in glass. Localization of the transponders 
is achieved using an electromagnetic array consisting of four radiofrequency signaling coils 
and 32 receiving coils. RF signals are emitted from the array at selected pulse rates and are 
used to excite the transponders at their individually unique resonant frequencies. This array is 
located above the patient. The transponders absorb some of the radiofrequency energy and re-
emit that energy in the form of a decaying signal that is detected by the electromagnetic array. 
The transponder position is then detected relative to the array which, in turn, is calibrated to 
the room coordinate reference system by three rigidly-mounted infrared cameras. A misalign-
ment of the target is detected by a proprietary algorithm that identifies shifts of the target from 
its prescribed location anytime throughout the treatment. The accuracy of the detection of the 
target in phantom is less than 1 mm.(5-11) Figure 2(a) shows a picture of the Calypso System 
and Fig. 2(b) shows an example of a single beacon transponder. The Calypso System displays 
real-time graphs instantaneously highlighting shifts in position that exceed a user-specified 
threshold. In order to localize and track with the Calypso System for prostate, a minimum of two 
transponders must be implanted, and the distance between the target centroid and the anterior 
surface must be < 17 cm. However, centroid localization can occur at distances up to 23 cm. In 
cases where the prostate isocenter is beyond 23 cm, prone positioning has been found to be an 
acceptable alternative with the Calypso System, provided that the respiration-induced motion 
is accounted for in treatment planning.

Although summarized in this manuscript, several publications have discussed, in greater 
detail, the clinical use, stability, and accuracy of the Calypso System.(5-11) Comparisons of patient 
localization based on transponder locations versus stereoscopic radiographic images showed 
an average 3D difference of 1.5 ± 0.9 mm.(11) Submillimeter accuracy has been reported when 
tracking Calypso transponders moving at 3 cm/s in a volume 14 cm × 14 cm in width and less 

Fig. 1. The Micropos RayPilot system: works as an add-on (a) to existing linear accelerators and enables control of a region 
of interest (ROI) position throughout every radiotherapy session; consists of (b) a receiving system which is placed on the 
existing treatment table, the transmitter that is placed in the ROI, and the user-interface software/computer. 

Figure 1(a) courtesy of Micropos Medical. Figure 1(b) reprinted from Kindblom J, et al.,(4) (Radiot Oncol.) with permis-
sion from Elsevier Inc.
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than or equal to 27 cm away from the array.(5,12) Additionally, this submillimeter localization 
accuracy has also been reported with studies that compared on-board kilovoltage imaging 
to transponder location from isocenter.(10) Significant stability of the geometry of implanted 
transponders throughout an entire course of external-beam radiation therapy has been reported. 
The reported mean standard deviation of the intertransponder distances, calculated using tran-
sponder coordinates obtained from the CT scans and the Calypso System daily localizations, 
was reported to be 0.8 mm.(7)  

Additionally, several added options are available with the Calypso System. The system has 
the capability of real-time translational treatment couch adjustments that are performed as 
the Calypso System calculates the deviation of the transponders from the treatment isocenter.  
Another added option is a radiation monitoring device inside the room that makes it possible 
to generate position deviation reports synchronized to the radiation delivery.

 
III. tEcHnoLoGIcAL AdVAncES For ELEctroMAGnEtIc trAcKInG

Increases in technological growth are reflected in improved methods to modulate and direct 
radiation beams for radiation therapy. The role of position localization and motion tracking in 
these methods is definitely understated. With electromagnetic tracking, explicit motion data 
can be recorded and harvested with a frequency of 10 Hz. The value of uninterrupted motion 
tracking for cancer targets is high when trying to provide precise radiotherapy to organs that 
move within the body independently of the surrounding tissues. This value only increases when 
clinicians choose to treat these organs by gating the radiation beam produced by the linear 
accelerator or choosing to dynamically deliver intensity-modulated radiation therapy to these 
organs in order to decrease dose to normal tissues through a reduction in treatment margins. 
The improvements in accuracy that positional tracking can provide to radiation oncologists and 
physicists should help manufacturers of electromagnetic tracking systems push for advance-
ments in their technology, as well as integration of their technologies with other major delivery 
systems over the next several years. 
          

Fig. 2. Calypso system (a) with sample beacon transponder (b). The Calypso system is positioned in the treatment room. 
The transponders are implanted into the patient and the array panel is positioned over the patient where it will excite and 
receive a signal of the beacon transponder’s location in the patient. The array is positioned in the room with the use of 
infrared cameras mounted to the ceiling of the treatment room. 

Images courtesy Calypso Medical Technologies, Inc.  
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A. technological applications
A.1 Linear accelerator gating
Electromagnetic tracking in partnership with a treatment option, such as linear accelerator gating, 
potentially is the next major option that may arise with industrial collaborations between device 
manufacturers within the next ten years. Techniques currently used to gate the treatment beam 
from a linear accelerator utilize a variety of external surrogates to account for respiratory motion. 
Such devices include, but are not limited to, external marker blocks,(13) infrared reflector body 
markers,(14) as well as strain gauge belts.(15) Studies have shown that the correlation between 
internal anatomy markers and external markers are valid, but in extremely limited cases.(16-20) 
This correlation was reported to be poor or nonexistent unless the external surrogate measuring 
the skin surface was near the target volume.(21) Furthermore, there is no guarantee that these 
correlations are constant throughout the course of radiotherapy,(22) and these correlations provide 
the clinician little quantitative information as to the position or location of the radiation target 
in question. Alternative methods for tracking internal markers have focused on kilovoltage 
imaging. Several studies have reported on fluoroscopic imaging systems to provide accurate 
information of tumor motion.(23,24) Real-time tracking with systems, such as CyberKnife, allow 
for linear accelerator tracking of lung fiducials at a high frequency with kilovoltage imaging. 
However, with additional imaging there is an added expense and increased imaging dose to the 
patient. This is where electromagnetic tracking is most beneficial. Direct monitoring of target 
position may provide an avenue to gate the treatment beam without additional dose to the pa-
tient and is conducted in real time, while many imaging techniques cannot be done in real time 
or can be done for only a fraction of the overall treatment time. Published work has reported 
on the feasibility of gating based on internal position with electromagnetic tracking.(25) This 
initial study used an electromagnetic tracking system to provide signals to a Varian Clinac via 
a “beam-hold” interface of the linear accelerator in order to trigger beam on/off and gate the 
treatment beam. The signals for beam on/off were determined in a “gating decision box”, which 
compared real-time position information with a predetermined three-dimensional (3D) volume.
(25) By gating the treatment beam this way, the clinician is able to deliver a therapeutic dose to 
the target volume based on absolute 3D position rather than based on phase or amplitude of a 
respiratory signal produced by the external surrogates for respiration.    
                  
A.2 Multileaf collimator tracking
As part of a multi-institutional and industrial collaboration, a tracking system with the ability of 
repositioning the multileaf collimator (MLC) dynamically to follow 3D target motion in real time 
has been developed.(26,27) The goal of MLC tracking is to dynamically find the target location 
and reposition the treatment beam to compensate for the target motion. This will  give clinicians 
another technique that accounts for respiratory motion but with higher delivery efficiency than 
a gated treatment.(22) Several investigators have published on dynamic MLC tracking of vary-
ing target motion.(28-31) Electromagnetic tracking can be a key component in this effort. With 
electromagnetic tracking, direct measurement of the target position can be achieved (with an 
increased frequency of 25 Hz), while avoiding issues with fluoroscopic imaging or other imaging 
techniques to determine tumor position (Fig. 3).(22) With the industrial collaborations between 
linac suppliers and electromagnetic tracking system developers,  real-time tracking with dynamic 
MLCs may be a viable option in the near future. Electromagnetic tracking systems provide 
translational position data, as well as reporting rotational information during the localization 
process. The rotations about the lateral, longitudinal, and vertical axes correspond to the pitch, 
roll, and yaw, respectively. This type of information can theoretically be implemented with 
dynamic MLC tracking to account for more complex motion such as in-plane rigid rotation 
and target deformation.(22) The combination of the MLC tracking and couch robotics integrated 
with an electromagnetic tracking system could potentially lead to increased conformal dose 
distributions and reduced dosimetric uncertainties, all with the possibility to improve treatment 
outcome by reducing the effects of intrafraction motion.  
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A.3 Integration with new treatment technologies
Another opportunity for electromagnetic tracking systems is integration with other radiotherapy 
technologies such as TomoTherapy, CyberKnife, new dynamic linear accelerators such as Var-
ian TrueBeam, and proton facilities. Currently, electromagnetic tracking systems have been 
installed in standard linear accelerator rooms only, and Calypso has established master agree-
ments with Varian and Siemens. However, integration with the treatment control systems for 
gating or tumor tracking, even with the mainstream linear accelerator manufacturers, has been 
slow in its development and clinical implementation. High precision delivery technologies 
could benefit from motion management systems. For example, the opportunity for CyberKnife 
to incorporate EM tracking with the motion of the robotic arm and linear accelerator would 
elevate their real-time tumor tracking for stereotactic lung radiotherapy that currently focuses 
on fiducial tracking with a ceiling-mounted kilovoltage imaging system. As another example, 
the effects of target motion are magnified with proton and other particle beam radiotherapy, 
especially if this motion is along the beam central axis. Electromagnetic tracking systems could 
play a large role in these facilities. 

A.4 4D dose calculations
Several institutions have evaluated the dosimetric consequence of intrafraction prostate motion 
in radiation therapy, either retrospectively or prospectively. With the capability for electromag-
netic tracking of prostate motion, motion can be used to calculate four-dimensional (4D) dose 
distributions. At Washington University in St. Louis, investigators have developed techniques 
to utilize this continuous localization data provided by electromagnetic tracking to evaluate 
dosimetric coverage for prostate cancer patients.(32) Investigators have developed a computer-
based tool to prospectively determine appropriate rotational and translational motion limits, as 
well as retrospectively analyze dosimetric target coverage using tracked positions of individual 
patient data. The investigators believe this application, referred to as SWIFTER (Semi-Automatic 
Workflow using Intrafraction Fiducial-based Tracking for Evaluation of Radiotherapy), will 
allow for evaluation of potentially more effective treatment techniques such as dose escalation, 
subprostatic boosts, and reduced-margin treatment planning.

Fig. 3. The data flow of the experimental system for multileaf collimator tracking with integrated electromagnetic  tracking.  
Reprinted from Sawant A, et al.,(22) (Int J Radiat Oncol Biol Phys.) with permission from Elsevier Inc.
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At MD Anderson Cancer Center Orlando, two studies have incorporated electromagnetic 
tracking with dose recalculation, either retrospectively or prospectively. Langen et al.(33,34) 
 studied the dosimetric impact of intrafraction prostate motion investigated for helical tomother-
apy treatments. Measured electromagnetic motion tracks were used to calculate the dosimetric 
impact on delivered target dose distributions in prostate cancer patients. The investigators de-
veloped a retrospective dose recalculation method that allowed for the input of motion tracks 
from an electromagnetic tracking system and dynamically recomputed the treatment delivery 
for helical tomotherapy treatments. They found that for the observed patient prostate motion, 
the resulting dosimetric effect on respective tomotherapy plans was small.(34) A second study 
investigated the feasibility for prospective simulation and visualization of the radiation therapy 
dose delivery for 3D lung tumors.(35,36) These investigators propose a method of simulating 
and modeling lung tumors in real time and visualizing dose accumulated to them. Santhanam 
et al.(36) further proposes that the motion tracking data will be recorded via implantable RF 
devices such as ones offered with electromagnetic tracking systems. They state that the pos-
sibility of real-time dose visualization can only be realized through real-time monitoring of 
patient motion with electromagnetic tracking and utilizing actual patient anatomy through 4D 
computed tomography.(35,36) 

B. Potential clinical indications
The potential clinical benefits from applications of electromagnetic tracking to clinical sites 
other than the prostate and prostate bed could be significant, especially in regions of large target 
motion, such as lung and liver. Direct measures of motion in target volumes in the thorax and 
abdomen will improve treatment accuracy and allow clinicians to maintain high dose gradients 
outside of the treatment volume to prevent excessive dose to the surrounding tissues. Several 
other anatomical sites also fall into this category, where organ motion may be substantial or even 
minimal motion may be critical. Currently, work is being done to incorporate electromagnetic 
tracking in several sites outside of the prostate. Hopefully, while these preliminary investigations 
are not yet FDA-approved, viable options to treat these sites will become clinically available 
within the next several years based on this early work.
   
B.1 Lung
With the increasing use of high-dose radiotherapy along with smaller treatment margins and 
the trend to use increasingly hypofractionated treatments, accurate placement of radiation fields 
is critical. One of the main limitations in dose escalation is the additional margin necessary to 
account for inter- and intrafraction setup errors. Respiratory motion of thoracic structures can 
reach up to 1.5 cm,(37) and the interfraction setup error using skin marks or bony landmarks can 
reach up to 1 cm.(38) This leads to an increase in radiation therapy volume to account for these 
uncertainties, and limits dose to normal tissues. Being able to directly measure the motion of 
tumors during breathing with electromagnetic tracking would allow clinicians to effectively 
reduce treatment volumes and decrease normal tissue doses without compromising tumor cover-
age. Observing and accounting for tumor motion from respiration during radiation treatment of 
non-small cell lung carcinoma (NSCLC) has been the aim of the research proposed by several 
investigators, most of which are detailed in this section.  

At MD Anderson Cancer Center Orlando, preliminary work has been done to directly measure 
tumor motion using an electromagnetic tracking system under an Institutional Review Board 
(IRB)-approved off-label study for NSCLC.(39) Additionally, this study requires investigational 
device exemption (IDE) from the FDA. To date, a total of twelve RF transmitters have been 
implanted into five patients with varied success. Bronchoscopic implantation of the RF devices 
was performed along with implantation of gold fiducial markers to improve stability and fixation 
(for every RF transmitter device, one fiducial marker). The lung implantation was performed 
using the superDimension system (superDimension Inc., Minneapolis, MN) that is designed 
to allow CT-guided bronchial navigation for biopsy, but is used at our clinic for implanting 
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 markers(1) as well as RF transmitters in and around lung lesions (Fig. 4). Of the twelve implanted 
RF devices, three did not remain fixated in the tumor location. Motion data were collected for 
all enrolled patients. The authors reported that this study was meant to collect real-time tumor 
motion tracks before and after treatment and not to interfere with the standard of care for radio-
therapy treatment for the patients enrolled in the investigation at their clinic. Figure 5 displays 
an example of the target tracks obtained for one patient during one session.

In a move toward clinical availability for electromagnetic tracking within the lung, an elec-
tromagnetic tracking device with a stabilization feature has been developed by Calypso Medical 
and investigated by a group at Washington University using a canine model.(40,41) Mayse et al.(42) 
reported successful bronchoscopic implantation for all 54 of the stabilized beacon transponders. 
At 60 days follow-up, all 15 of the transponders with working electromagnetic cores had stable 
intertransponder distances as measured by the Calypso System. The stabilization feature incor-
porating five nitinol legs was created to house the electromagnetic beacon  transponder (Fig. 6). 
The nitinol legs are designed to deploy into the bronchus after bronchoscopic implantation. The 
authors reported that successful implantation and fixation were very sensitive to the implanta-
tion technique, in that too much force on the implantation catheter may lead to pneumothorax 
and not enough force may lead to a low rate of fixation. 

         

Fig. 4. Images from lung cancer patient with left lobe, posterior lesion approximately 1.5 cm in diameter with three 
RF transmitters and two gold fiducial markers implanted. The fiducial markers were placed to ensure device stability.  
RF transmitter devices and fiducial markers imaged on (a) computed tomography and (b) a c-arm fluoroscopic system.  
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Fig. 5. Examples of lung tumor tracks acquired through electromagnetic tracking with the Calypso system under an 
IRB-approved off-label study for NSCLC. Target motion in the same timescale is shown in the left–right (LR) (top), 
anterior–posterior (AP) (middle), and superior–inferior (SI) (bottom) directions for (a) the total time tracked for the single 
session, and (b) a detailed view of target motion data for 50 seconds. Figure 5(b) illustrates the changes in position from 
drift and irregular motion, which may not be realized in looking at the tracks given in Fig. 5(a), especially in the anterior–
posterior direction where target motion was the largest. 
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B.2 Liver/pancreas
Implanted fiducials are commonly used for image-guided radiation therapy (IGRT) of ab-
dominal tumors, especially in stereotactic body radiation therapy (SBRT) cases.(43,44) Fiducial 
implantation is often performed as an out-patient procedure, with little migration(45) and clear 
compatibility with kilovoltage imaging; thus, its value for treating moving targets such as liver 
tumors far outweighs its cost. Furthermore, the introduction of electromagnetic tracking for 
these targets could potentially be quite valuable. There are few studies that have investigated 
the use of electromagnetic tracking in abdominal targets with the radiofrequency devices. This 
may be due to a limitation in implantation techniques for the relatively large diameter devices 
that are currently available on the market, as well as the corresponding concerns with RF device 
migration after implantation. Another concern with implantation of the RF transmitter devices 
with targets such as the liver is the need for post-treatment magnetic resonance imaging (MRI) 
studies for patient follow-up. The potential for increased image artifact created by the implanted 
RF transmitters within an MRI study would prove too costly for clinicians. This issue is further 
explained below with regard to RF transmitter size and the need for removable RF devices. At 
the University of Pennsylvania, investigators have implanted RF transmitters into the pancreas 
of three patients under laparoscopic guidance.(46,47) The investigators have reported stability 
with the RF device implantation and all patients were without complications.  
                
B.3 Breast
Reduction of margins, setup error, and the possibility of intrafraction motion during partial 
breast irradiation are all factors that may be improved with the introduction of an electromag-
netic tracking system. Preliminary work has been done to test the feasibility of electromagnetic 
localization for external beam partial breast irradiation.(48) Investigators at Swedish Medical 
Center in Seattle have used an electromagnetic tracking system under an IRB-approved pro-
tocol to implant RF devices into the lumpectomy cavity of fifteen patients.(49) Implantation 
of electromagnetic transmitters may not be ideal for breast cancer patients due to the need 
for post-treatment magnetic resonance imaging studies for clinical follow-up. Therefore, the 
investigators took precautions to implant the RF devices temporarily via interstitial catheters 
and removed them following course of radiotherapy treatment.    
  
B.4 Cervix
Investigators at Emory University have recently started a clinical trial to evaluate intrafrac-
tional cervical motion utilizing an electromagnetic tracking system in cervical cancer patients. 

Fig. 6. Anchored lung transponder from Calypso Medical Technologies Inc. The lung transponder is intended for 
bronchoscopic implantation in small diameter airways. The anchored transponder consists of the prostate transponder 
with a 5-legged nitinol stability feature.  

Images courtesy Calypso Medical Technologies.  
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The trial states that two RF devices will be temporarily placed within the cervical os via su-
tures and tracked during the course of radiation therapy treatment. The patients will continue  
with the clinic’s standard of care, but the RF transmitter positions will be continuously tracked 
and recorded. The end goals for the investigators are to improve the current knowledge  
of cervical motion and tumor regression during radiation therapy with the use of electromag-
netic  tracking.(50)

B.5 Central nervous system
Although SBRT is not restricted to the radiotherapy for the central nervous system, it has be-
come more common in radiation oncology, and IGRT has become a necessary component of 
this type of treatment. Electromagnetic tracking could easily play a critical role in the delivery 
of SBRT for CNS-related systems. The continuous monitoring of target displacements could 
provide an improved means to deliver accurate dose to the target while reducing dose to  normal 
tissues, especially in cases where the target could move during the treatment delivery. In one 
such example, Willoughby et al.(39) reported on the use of electromagnetic tracking during 
spinal radiosurgery. These investigators, under fluoroscopic guidance, transcutaneously im-
planted RF transmitters into the paraspinal muscles at the level of the targeted vertebra in six 
patients (Fig. 7). The implantation was successful in all six of the spine patients. There were 
no complications related to the implantation processes. All patients had at least two CT scans 
prior to treatment delivery to confirm stability and geometry of the RF devices. At the time 
of treatment, all patients also had kV X-rays to confirm stability and geometry in the treat-
ment position prior to each delivery. Similar to the liver, issues with post-treatment magnetic 
resonance imaging studies for the spine need to be mentioned and will be addressed in more 
detail below. Tracking data on the available electromagnetic tracking system was obtained 
on all four patients. An example of this tracking data from one patient can be seen in Fig. 8. 
A second scenario could also be envisioned for stereotactic radiosurgery patients. Currently, 
many institutions have gone to frameless radiosurgery using fiducials and optical tracking tech-
niques. Accordingly, an interesting question arises if this could be done using electromagnetic 
tracking, as proposed in 1992 by Houdek et al.,(2) for intracranial lesions. For example, RF 
transmitters could be implanted into a bite-block or similar device, and cranial displacements 
could be tracked and recorded with tolerances set to gate the radiation beam off as increases 
to translation or rotational motion occurs.(51)  

 

Fig. 7. Images from patient who presented with painful bony metastases to the fourth lumbar vertebral body with three 
RF transmitter devices surgically implanted into the paraspinal muscle for single-fraction stereotactic body radiotherapy 
for pain relief and quality of life enhancement. RF transmitters imaged on (a) computed tomography and (b) a c-arm 
fluoroscopic system.  

(a) (b)
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Fig. 8. Examples of target tracks acquired through electromagnetic tracking with the Calypso system under an IRB-approved 
off-label study for spine stereotactic body radiotherapy. Target motion in the same timescale is shown in the left–right (LR) 
(top), anterior–posterior (AP) (middle), and superior–inferior (SI) (bottom) directions for the total time tracked before the 
single fraction treatment. In this example, the target motion in each direction was less than 2 mm.
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IV. cHALLEnGES to ELEctroMAGnEtIc trAcKInG 

Electromagnetic tracking is still an immature technology in radiation oncology, and as such, 
the clinical applications and clinical experience are both very limited. Some of the major chal-
lenges with incorporating electromagnetic tracking into daily use for radiation therapy are due 
to the limited number of available technologies. With the Calypso System being the sole FDA-
approved electromagnetic tracking system used in radiation oncology, development resources 
are limited. Hence, there are many opportunities for improvement over the next decade.

First and foremost among limitations, electromagnetic tracking has only been approved for 
use in prostate cancer treatment. Any use at other disease sites must be approved and monitored 
by the FDA and the local IRB. While there is utility in tracking the prostate, there is more 
potential benefit at other disease sites mentioned previously. The development of techniques 
to treat these clinical sites, along with the regulatory approval to do so, needs to be addressed 
in the near term. 

Some technical challenges that are inherent to electromagnetic tracking systems are related 
to the electromagnetic array. In the currently available electromagnetic tracking system, the 
array rests directly above the prostate cancer patient with a need for direct line of site to the 
infrared cameras that track the array’s motion and position relative to isocenter. The combina-
tion of the array’s position and RF transponder’s position relative to the array, provides the 
electromagnetic tracking system with the actual room coordinate system and, further, the 
transponder’s position relative to isocenter. However, several issues arise due to the presence 
of the electromagnetic array, such as issues with couch angles, distance issues from the array 
to the implanted RF devices, and collision issues with the gantry due to the proximity of the 
array to the gantry head. If the need for the array (anterior to the patient) was not there or if the 
array could be in another location (such as embedded in the treatment couch), many of these 
issues could be resolved and the infrared cameras in the room could be removed. Although for 
this to happen, treatment couches would be required to maintain millimeter-scale positioning 
accuracy, or maintain the infrared tracking system but tied directly to the treatment couch. 
Another issue with the electromagnetic tracking systems is in the limited field of view (FOV) 
with the array. The current FOV limitation of the available system is not a major problem 
when treating the prostate (the system’s intended purpose); however, if new clinical indications 
are to be implemented, this limitation will need to be addressed. Even more important, if the 
flat-field generator were placed in a location adjacent to the patient with no interference from 
electrical and ferrous objects in the accelerator room, the benefit of tracking implanted needles 
or devices would be infinite.

Another challenge to electromagnetic tracking systems is regarding the RF device size.  
With the currently available RF transmitter device, its large size allows for high signal to 
noise. However, the 8 mm length × 2 mm diameter device size requires a 14-gauge needle 
for transperineal implantation, which is considered large for transcutaneous needle insertion 
for areas such as the liver or bronchoscopic insertion into the lung. The risk of pneumothorax 
with transcutaneous approaches is estimated to be in the 20%–30% range, and even higher 
(40%–50%) in patients with obstructive airway disease.(1) The risk of pneumothorax is greatly 
reduced with transbronchial fiducial placement in the lung, even in peripheral lesions under 
fluoroscopic guidance.(1) Also, when taking into consideration follow-up imaging studies of 
patients, the RF transmitter’s relatively large ferrite core creates significant artifact on MRI or 
even kilovoltage cone beam CT.(52) It was reported that implanted transponder displacements 
due to the MR field were minimal; however, the null signal reported due to image artifacts were 
up to 1.5 cm in radius and 4 cm in length, thus creating significant issues with post-treatment 
imaging with patient follow-up.(52) A reduction in the sizes of RF devices would be beneficial, 
but would not  prevent these image artifacts from occurring. Development of removable RF 
transmitters would be the next expected course of action for treatment areas that benefit from 
post-treatment MR imaging.   
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Another challenge is to provide a system only for motion tracking, not localization and 
tracking. In the current configuration of electromagnetic tracking systems, there is great care 
to ensure that the RF transmitter devices are in the correct location relative to the isocenter. In 
order to perform this calculation accurately and precisely there are limitations to the additional 
noise from metal or other devices in the room, restrictions on the implantation geometry, as well 
as procedures to limit the amount of motion the RF devices are experiencing in the implantation 
location. If tracking-only were allowed, the user would be responsible to localize the patient via 
some other imaging modality, and the electromagnetic tracking system would gain flexibility 
by providing only relative coordinates of the implanted RF transmitters. This could be used 
in computed tomography for 4D CT, or used during treatment in other sites in the body where 
localization issues based on single implanted markers may arise due to intrafraction motion 
and deformation, such as lung and liver. Also, if relative displacement numbers were reported, 
the need for multiple implanted RF devices may not be necessary. Multiple transmitters, if 
implanted correctly, provide the clinician with rotational information and possible organ defor-
mation information; however, without imaging, it cannot be known if the reported angles are 
due to marker migration or due to organ deformation. If rotational information is not desired, 
then multiple RF devices may not be needed.  

Another challenge to electromagnetic tracking is with competing technologies that may pro-
vide tracking via a different delivery system. Although radiofrequency-based electromagnetic 
tracking systems can be used in real time to track tumor location due to its fast update rate, 
new emerging technologies are constantly being developed that may provide a similar track-
ing mechanism. One such technology being developed by Navotek Inc. (Navotek Inc., Israel) 
provides the ability to track targets within the body. Navotek is developing a gantry-mounted 
radioactive fiducial tracking system that is reported to provide submillimeter accuracy for pa-
tient localization and monitoring.(53) Radioactive fiducial tracking, though not FDA-approved, 
challenges technologies such as electromagnetic tracking with technical advancements in im-
plantable radioactive materials and localization of these sources. However, this technology may 
have insufficiencies of its own such as the lack of ability to provide rotational information and 
possible organ deformation information. In addition, if any migration of the radioactive source 
does occur, it will be quite difficult to determine by how much and to where it is migrating.  

The last challenge to electromagnetic tracking is with reimbursement. While not a techno-
logical limitation, the up-front capital expense of electromagnetic tracking systems and the 
ongoing expense of the implantable markers remain barriers to widespread implementation of 
these technologies. Because of the high cost of these RF transmitters and the varying levels 
of reimbursement in different geographical regions, it is cost prohibitive for many centers to 
consider this technology for routine clinical use. Unless these cost and reimbursement issues 
are addressed, electromagnetic tracking technology may not experience further growth in 
radiation oncology. Continued research collaborations need to show that (a) electromagnetic 
tracking is a growing technology with increased development of treatment options, (b) proper 
and unbiased efficacy tests show an improved therapeutic effect, and (c) effectiveness tests 
show electromagnetic tracking does help in localization and targeting of the tumor region. For 
example, the latter two points could be tackled through dosimetric studies that show intrafrac-
tion motion during radiotherapy does result in differences in the delivered dose versus the 
planned dose — similar to some of the studies mentioned above related to retrospective dose 
recalculations.(33,34)     

 
V. SuMMArY

Electromagnetic tracking systems enable accurate patient set-up, respiratory correlated radio-
therapy, collision avoidance, and adaptive radiation therapy. Furthermore, daily use of these 
systems is minimally invasive and delivers no additional ionizing radiation to the patient. Due 
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to these advantages, electromagnetic tracking systems are expected to play a continued role in 
improving the precision of radiation delivery. There are a number of technical and fiscal issues 
that need to be addressed in the near term, however, to ensure the success of these technologies 
in improving patient care over the next ten years and beyond.
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