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Abstract: Glaucoma leads to millions of cases of visual impairment and blindness around the world.
Its susceptibility is shaped by both environmental and genetic risk factors. Although over 120 risk
loci have been identified for glaucoma, a large portion of its heritability is still unexplained. Here we
describe the foundation of the Genetics of GLaucoma Evaluation in the AMish (GGLEAM) study to
investigate the genetic architecture of glaucoma in the Ohio Amish, which exhibits lower genetic
and environmental heterogeneity compared to the general population. To date, we have enrolled
81 Amish individuals in our study from Holmes County, Ohio. As a part of our enrollment process,
62 GGLEAM study participants (42 glaucoma-affected and 20 unaffected individuals) received
comprehensive eye examinations and glaucoma evaluations. Using the data from the Anabaptist
Genealogy Database, we found that 80 of the GGLEAM study participants were related to one
another through a large, multigenerational pedigree containing 1586 people. We plan to integrate
the health and kinship data obtained for the GGLEAM study to interrogate glaucoma genetics and
pathophysiology in this unique population.
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1. Introduction

Vision loss is a significant public health concern that is worsening with the increasing
size of the elderly population [1]. Glaucoma is a leading cause of irreversible blindness
with about 64 million individuals affected around the world [2]. This complex phenotype
is considered a collection of disorders characterized by the progressive loss of peripheral
vision resulting from degeneration of the optic nerve [3]. While there are early-onset forms
of glaucoma, the most common type of glaucoma, primary open-angle glaucoma (POAG),
manifests in adulthood and has a complex pattern of inheritance [4]. POAG is a multi-
factorial condition with both genetic and environmental risk factors [5–7]. Genome-wide
association studies of large cohorts of unrelated individuals have identified 127 loci associ-
ated with POAG risk as well as many loci associated with quantitative POAG traits called
endophenotypes like intraocular pressure (IOP) and optic disc parameters [8–16]. However,
genetic variation in these loci only accounts for less than 10% of POAG heritability [8,16].
Therefore, a substantial portion of POAG heritability remains unexplained [17].
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Previous studies have shown the utility of working with founder populations and
population isolates to elucidate genetic variation for glaucoma [18–25] and other age-
related ocular traits [26–29]. The Amish comprise an isolated, founder population that is
culturally and genetically segregated from the general population of European descent [30].
They typically practice a conservative, uniform lifestyle that includes similar dietary habits,
occupations, and physical activity as well as minimal smoking [31]. Nearly all present-day
Amish are descendants of a few hundred Swiss–German Anabaptists who emigrated to
the United States to escape religious persecution in Europe in the late eighteenth and
early nineteenth centuries [32,33]. The resettlement of these individuals in North America
resulted in a population bottleneck that has been sustained across generations because
Amish typically marry within their faith group and non-Amish individuals rarely join the
Amish community [34]. Therefore, the Amish are a valued population in genetics research
due to their relatively homogeneous environments and their reduced genetic variation due
to their founder event and consanguinity [35].

Our multidisciplinary team set out to establish the Genetics of GLaucoma Evaluation
in the AMish (GGLEAM) study to understand the prevalence and risk factors of glaucoma
in Amish communities in Ohio. This represents a previously unexplored area in genetics
research, especially given that the incidence of common, age-related forms of glaucoma
are unknown in the Amish. Furthermore, we hypothesize that studying a complex ocular
disease like glaucoma in a genetically and environmentally homogeneous population,
like the Amish, will facilitate the discovery of novel loci associated with glaucoma and
its endophenotypes and aid in our understanding of its pathophysiology. This work also
highlights the importance of establishing a working relationship with study participants in
biomedical research, especially those from special populations.

2. Materials and Methods
2.1. Study Participants

The participants in the Genetics of GLaucoma Evaluation in the AMish (GGLEAM)
study are Amish individuals living in and around Holmes County, Ohio. The Holmes
County, Ohio Amish community comprises one of the largest Amish settlements in North
America [36]. It began in 1809 when Amish settlers moved there from Somerset County,
Pennsylvania [37]. Our initial contacts with this community were made over twenty years
ago through advertising in the local Amish papers and meeting with community lead-
ers to establish a working relationship with the Amish community in Holmes County
as previously described [38–46]. Due to their lifestyle, Amish abstain from using mod-
ern technology in their homes [30,33]; therefore, study participants were recruited for
this study using door-to-door methods and through advertisements in local newspapers.
The recruitment for our GGLEAM study branched from the ongoing Amish Eye Study,
which recruited Amish individuals from Ohio, Indiana, and Pennsylvania to interrogate
age-related macular degeneration (AMD) genetics and identify possible biomarkers for
AMD from optical coherence tomography (OCT) [46]. In that study, some participants
self-reported prior glaucoma diagnoses, and we found that all the self-reported glaucoma
diagnoses were clinically confirmed (positive predictive value: 100%). These observations
inspired us to increase our engagement with the Amish in Holmes County, Ohio and
launch the GGLEAM study to focus on glaucoma in this population.

The GGLEAM study enrollment process was comprised of two visits with partici-
pants. In the first visit, the study coordinator consented the study participants in their
homes, and study participants completed health and family medical history questionnaires
(Supplementary Materials), which were based on the questionnaires developed for the
Collaborative Amish Aging and Memory Project (NIH grants AG058066 and AG019085)
and the Amish Eye Study (NIH grant EY023164). The second visit occurred at the Ohio Eye
Associates office in Mansfield, Ohio at which the participant received a comprehensive eye
examination performed by a fellowship-trained MD glaucoma specialist. During this visit,
a blood sample was also drawn by the study coordinator for DNA extraction and biomarker
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analysis. The examination included visual acuity assessment by Snellen eye chart, auto-
mated 24-2 Humphrey visual field testing (Zeiss, Oberkochen, Germany), stereo optic disc
photography, optical coherence tomography assessment of the optic disc, retinal nerve
fiber layer and ganglion cell complex (Cirrus SD-OCT, Zeiss, Oberkochen, Germany),
gonioscopy, central corneal thickness measurement by Pachmate 2 (DGH Technology,
Inc., Exton, PA, USA), assessment of corneal hysteresis via the Ocular Response Analyzer
(Reichert Technologies, Buffalo, NY, USA), intraocular pressure (IOP) measurement with
Goldman applanation tonometry, detailed slit lamp biomicroscopy, and fundus exam via
indirect ophthalmoscopy following pupil dilation. Glaucoma diagnoses were defined
by current American Academy of Ophthalmology Preferred Practice Guidelines [47,48].
Briefly, glaucoma determination was based on IOP measurements taking into account
corneal thickness and hysteresis as well as optic nerve examination, visual field testing,
and assessment of the retinal nerve fiber layer and ganglion cell layer complex.

Individuals were invited to participate in the study if they met one of the following
criteria: (i) reported to have or were diagnosed with any type of glaucoma; (ii) were at
least 40 years old and did not have glaucoma; or (iii) had family members with glaucoma.
Individuals under 40 without a prior diagnosis of glaucoma or family history of glaucoma
were not invited to participate in the study. All study participants provided informed
consent, and the study was conducted within the guidelines of the Declaration of Helsinki.
The study protocol was approved by the institutional review board at Case Western Reserve
University (IRB-2017-2067).

2.2. Amish Pedigree

The Amish are a culturally isolated population with extensive genealogical records
dating back to their emigration to North America [49]. Community-based directories
and research-based resources, described elsewhere, have been developed to curate these
data [50]. To determine the relatedness of the GGLEAM study participants, we queried the
Anabaptist Genealogy Database (AGDB) [51]. Based on these pedigree data, we constructed
an all-connecting path pedigree (ACP) to depict all known familial relationships among
study participants and their ancestors. The ACP was drawn using the Pedigraph software
tool [52]. Kinship and inbreeding coefficients were calculated using KinInbcoef software
and genealogical information from the all-connecting path pedigree [53].

3. Results
3.1. GGLEAM Study Participants

Thus far, we have enrolled 81 study participants from the Amish community in
and near Holmes County, Ohio. Of these individuals, we have obtained phenotypic
data from comprehensive eye exams and health questionnaires for 62 individuals to date.
A fellowship-trained MD glaucoma specialist determined glaucoma type and severity
based on the results of each individual’s comprehensive glaucoma examination and testing
results. Most of the glaucoma-affected study participants (88%) have primary open-angle
glaucoma (POAG) (Table 1). On average, individuals with glaucoma were older than
individuals without glaucoma (67.6 years old and 56.95 years, respectively) (Table 1).

3.2. Family History of Glaucoma

Family history is a well-established risk factor for glaucoma [4,54–56]. Individuals who
have first-degree relatives with glaucoma have a 10-fold higher risk of developing glaucoma
compared to individuals without glaucoma-affected first-degree relatives [57]. We enrolled
study participants based on their self-reported or clinically confirmed diagnosis of glau-
coma as well as their self-reported family history of glaucoma. Specifically, we asked
study participants if they had a family history of glaucoma in first-degree relatives or
extended family members. As a consequence of the interrelatedness and close-knit nature
of this population, several of the study participants were from the same Amish nuclear
families. We found that about 66% of the GGLEAM study participants had first-degree
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relatives with glaucoma (Table 2). Of the 42 glaucoma-affected Amish individuals in our
study, 80.95% had first-degree relatives affected by glaucoma, and 69.05% had extended
family members with glaucoma (Table 2). Most of the unaffected individuals in this study
reported that they did not have a family history of glaucoma (Table 2).

Table 1. Features of Genetics of GLaucoma Evaluation in the AMish (GGLEAM) Study Participants.
Of the 42 glaucoma-affected Amish in this study, 37 individuals have POAG and 5 have another
form of glaucoma including 1 person with chronic angle closure glaucoma and 4 individuals with
pigmentary glaucoma. Age values represent the study participants’ ages at their eye exams. The age
range for study participants with glaucoma was 40–85, and the age range for unaffected individuals
was 42–81.

Affected Unaffected

N 42 20

Age Mean ± SD 67.60 ± 11.39 56.95 ± 10.33

Sex Male 19 7

Female 23 13

Table 2. Family history of glaucoma in GGLEAM study participants. First-degree relatives include
parents and siblings. Extended family includes aunts, uncles, and cousins.

Family History of Glaucoma Affected (%) Unaffected (%) All (%)

First-Degree
Relatives

No 8 (19.05) 13 (65) 21 (33.87)

Yes 34 (80.95) 7 (35) 41 (66.13)

Extended
Family

Unknown 1 (2.38) 1 (5) 2 (3.23)

No 12 (28.57) 14 (70) 26 (41.94)

Yes 29 (69.05) 5 (25) 34 (54.84)

3.3. Quantitative Ocular Measurements

The majority of the GGLEAM study participants (n = 62) underwent comprehensive
eye exams that yielded various quantitative ocular measures for 42 glaucoma-affected
individuals and 20 unaffected individuals (Table 3). This includes quantitative ocular mea-
surements for 37 POAG-affected individuals (Table 4). Sixteen of the glaucoma-affected
study participants either received IOP lowering medications (i.e., prostaglandin analogs,
beta-blockers, alpha agonists, oral carbonic anhydrase inhibitors, topical carbonic anhy-
drase inhibitors, or cholinergic agents) or had prior surgery (i.e., glaucoma filtering surgery,
laser iridotomy, argon laser trabeculoplasty, selective laser trabeculoplasty, or minimally
invasive glaucoma surgery). Average IOP was higher among individuals with glaucoma
(i.e., average IOP: 15 mmHg) compared to individuals without glaucoma (average IOP:
14 mmHg) (Table 3). The average IOP in study participants with POAG was about
15 mmHg (Table 4). The average vertical cup-to-disc ratio (VCDR) was over 1.6 times higher
in glaucoma-affected individuals (OD VCDR: 0.62 ± 0.12, OS VCDR: 0.66 ± 0.12) com-
pared to unaffected individuals (OD VCDR: 0.38 ± 0.15; OS VCDR: 0.37 ± 0.16) (Table 3).
The average VCDR in the right and left eyes of POAG-affected individuals were 0.63 and
0.66, respectively (Table 4). Although the average refractive error for individuals without
glaucoma was substantially lower than for study participants with glaucoma, the ranges of
values observed for both groups overlapped (Table 3). The mean central corneal thickness
(CCT) was lower in glaucoma-affected individuals compared to unaffected individuals
(Table 3). The average CCT for POAG-affected individuals was also lower than the aver-
age CCT observed in unaffected individuals (Tables 3 and 4). Average axial length was
nearly the same in glaucoma-affected individuals compared to unaffected individuals
(Tables 3 and 4).
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Table 3. Quantitative eye measurements. Measurements were obtained from eye exams performed at
the Ohio Eye Associates office. These data were obtained for 42 glaucoma-affected study participants
and 20 unaffected individuals. IOP: intraocular pressure. VCDR: vertical cup-to-disc ratio. OD:
oculus dexter (right eye). OS: oculus sinister (left eye). Refractive error: Spherical equivalent from
distance refraction. D: diopters.

Affected Unaffected

Average ± SD
(Range)

Average ± SD
(Range)

OD IOP
(mmHg)

15.1 ± 4.0
(3–22)

13.5 ± 2.8
(8–19)

OS IOP
(mmHg)

15.4 ± 3.7
(9–22)

13.8 ± 3.1
(8–21)

OD VCDR 0.62 ± 0.12
(0.30–0.90)

0.38 ± 0.15
(0.10–0.64)

OS VCDR 0.66 ± 0.12
(0.40–0.90)

0.37 ± 0.16
(0.06–0.62)

OD Refractive error
(D)

0.59 ± 1.55
(−4.00, +4.50)

−0.17 ± 2.34
(−6.00, +3.25)

OS Refractive error
(D)

0.49 ± 1.54
(−3.00, +5.00)

−0.21 ± 2.32
(−6.50, +3.00)

OD CCT
(Microns)

549 ± 43
(440–658)

559 ± 29
(516–606)

OS CCT
(Microns)

547 ± 42
(466–638)

564 ± 34
(514–627)

OD Axial Length *
(mm)

23.70 ± 0.86
(22.02–25.47)

23.71 ± 1.13
(21.58–26.30)

OS Axial Length *
(mm)

23.60 ± 0.85
(21.86–25.20)

23.58 ± 1.10
(21.59–25.98)

* These values were calculated based on measurements from 33 glaucoma-affected individuals and 20 controls.

3.4. Genealogy of GGLEAM Study Participants

The Amish represent a unique population in genetics research due to their recent
founding event and the extensive genealogical records available for this community [32,35,51,58].
One of these resources includes the Anabaptist Genealogy Database (AGDB) [51,59].
We queried the AGDB and found that 80 of the 81 GGLEAM study participants are re-
lated to one another through a 1586-person all-connecting path (ACP) pedigree (Figure 1).
One individual enrolled in this study only had parental information in the AGDB and
could not be connected to the pedigree. Kinship coefficients were calculated among the
80 connected GGLEAM study participants using KinInbcoef [53]. The average kinship
coefficient among these study participants was 0.023 (SEM: 0.00064). The maximum kinship
coefficient observed was 0.273, and the minimum was 0.00257. The average inbreeding
coefficient calculated by KinInbcoef was 0.014 (SEM: 0.000747).
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Table 4. Quantitative eye measurements for POAG-affected GGLEAM study participants. Measure-
ments were obtained from eye exams performed at the Ohio Eye Associates office for 37 POAG-
affected individuals. IOP: intraocular pressure. VCDR: vertical cup-to-disc ratio. OD: oculus dexter
(right eye). OS: oculus sinister (left eye). Refractive error: Spherical equivalent from distance
refraction. D: diopters.

POAG

Average ± SD
(Range)

OD IOP
(mmHg)

15.0 ± 4.2
(3–22)

OS IOP
(mmHg)

15.1 ± 3.6
(9–22)

OD VCDR 0.63 ± 0.11
(0.30–0.85)

OS VCDR 0.66 ± 0.11
(0.40–0.90)

OD Refractive error
(D)

0.56 ± 1.59
(−4.00, +4.50)

OS Refractive error
(D)

0.53 ± 1.57
(−3.00, +5.00)

OD CCT
(Microns)

547 ± 43
(440–658)

OS CCT
(Microns)

545 ± 42
(466–638)

OD Axial Length *
(mm)

23.66 ± 0.88
(22.02–25.47)

OS Axial Length *
(mm)

23.55 ± 0.84
(21.86–25.09)

* These values were calculated based on measurements from 29 individuals with POAG.
Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 7 of 14 
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the Anabaptist Genealogy Database (AGDB) [43]. The 80 GGLEAM study participants are highlighted in blue. Men are
represented by squares, and females are represented by circles. Pedigree was drawn using the Pedigraph software tool.
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4. Discussion

Glaucoma is a leading cause of irreversible blindness, but its genetic architecture and
disease etiology are not fully understood. We established the GGLEAM study to under-
stand glaucoma risk in the Ohio Amish, which are a population isolate. While previous
studies in the Amish examined congenital glaucoma [60] or described glaucoma as a clinical
feature in a few individuals with a homozygous mutation in the SAMHD1 gene associated
with cerebral vasculopathy and early onset stroke [61], glaucoma risk and prevalence have
not been extensively studied in the Amish population. Therefore, this study can provide
the foundation for future work assessing glaucoma risk in this population, which could
inform understanding of glaucoma risk in general. To date, we have enrolled 81 Amish
individuals from in and around Holmes County, Ohio, and 62 of these study participants
have received comprehensive eye exams. Moving forward, we plan to enroll additional
Ohio Amish community members in our study and obtain data from glaucoma-specific
eye exams for all of the GGLEAM study participants.

Because our study design includes obtaining glaucoma status and quantitative eye
measurements of the GGLEAM study participants, we can study the genetic variation
potentially associated with glaucoma and its endophenotypes. Examining heritable en-
dophenotypes such as IOP and VCDR rather than disease status alone increases the sta-
tistical power to detect associated loci for a heterogeneous phenotype like glaucoma [18].
Identifying genetic variants associated with these glaucoma-related traits may improve our
understanding of glaucoma development and disease pathophysiology [62]. Additionally,
studying a complex trait like glaucoma in an isolated, founder population like the Amish
may allow for the identification of novel genetic variants that have been indiscernible
from previous genetics studies in large datasets of unrelated individuals due to low minor
allele frequency (MAF) [17]. In traditional case-control genome-wide association stud-
ies, the sample size needed to detect trait-associated variants increases with 1/MAF [17].
Therefore, sample sizes in these population-based cohorts are in the tens of thousands.
By comparison, association studies of rare variants in families require lower sample sizes if
disease-associated variants are present since they are likely to be inherited by other family
members [63]. This aspect of family-based study designs is augmented in studies with pop-
ulation isolates, which can have densely affected families with potentially causal variants
inherited identical-by-descent from a small set of common ancestors [34,64]. The Amish
resettlement in North America and generations of intra-faith marriages has resulted in the
accumulation of alleles that are rare in the general population of European descent.

The all-connecting path pedigree we constructed for the GGLEAM study participants
using data from the AGDB [51] confirmed that we are effectively working with one large
family, which will greatly aid in future genetics studies of this cohort. Furthermore, the av-
erage kinship and inbreeding coefficients we calculated for these individuals were 0.023
and 0.014, respectively. The estimated inbreeding coefficient for the Amish population,
in general, is 0.0151 [65]. The average kinship coefficient previously calculated for Amish
families in Ohio and Indiana was 0.019 [41]. Leveraging kinship information enables us
to account for familial relationships among study participants, which are highly inter-
connected due to generations of endogamy in the population [35]. We can then utilize
this information in family-based association tests between glaucoma affection status and
SNP genotype to identify novel glaucoma risk variants or in gene-set methods (i.e., kernel,
burden, and collapsing methods) to identify rare variants for glaucoma [17,66–68].

In addition to being genetically homogeneous as a result of their recent popula-
tion bottleneck and generations of intra-faith marriages, the Amish adhere to a con-
servative lifestyle that is mostly consistent across Amish communities, which are pre-
dominantly in rural areas [35]. Therefore, environmental exposures, modifiable health
behaviors, and lifestyle factors are more homogeneous in the Ohio Amish compared
to the general population of European descent. These features of the Amish popu-
lation make them a valued population to investigate both genetic and environmental
risk factors for glaucoma as well as the possible interactions among these risk factors.
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Through health, physical activity, environmental exposure, and family history question-
naires in the GGLEAM study (Supplementary Materials), we aim to investigate non-genetic
factors pertaining to glaucoma risk in this population. We are especially interested in
factors that have been inconsistently associated with glaucoma risk and development,
including diet, physical activity, caffeine consumption, smoking, and alcohol consump-
tion [69–71]. As a part of their cultural traditions, the Amish generally do not use motorized
vehicles; therefore, they have higher activity levels than non-Amish individuals [30,72].
Most Amish community members consume a similar diet that consists of foods that are rich
in carbohydrates and lipids as well as homegrown fruits and vegetables [73]. They also typ-
ically abstain from smoking and consuming alcoholic beverages [73,74]. All 62 GGLEAM
study participants who completed our questionnaires stated that they had never smoked,
and only one individual self-reported alcohol consumption. Therefore, our GGLEAM
study is well-positioned to assess the contributions of risk factors like physical activity, diet,
and caffeine consumption in a uniquely homogeneous population that generally prohibits
smoking and alcohol consumption. Increased knowledge of the effects and interplay of
genetic and environmental risk factors may broaden our understanding of glaucoma patho-
physiology, facilitate earlier disease detection based on more comprehensive risk profiles,
and inspire the development of novel therapeutics to treat glaucoma.

Amish communities in North America have been engaged in genetics research since
the 1960s [35,58]. These early efforts led to better understanding of various Mendelian
genetic disorders [33], and several studies have also shown the utility of studying com-
plex traits in Amish families due to their reduced heterogeneity in genetic variation and
environmental exposures [17,26,28,29,38–46,75–95]. Initial research efforts with Amish
communities involved collaboration among researchers and local Amish liaisons who were
familiar with the families in the community, could speak Pennsylvania Dutch, and under-
stood the customs and values of the Amish [58]. Some of these practices were continued
as more research teams began working with the Amish population, including the Amish
Research Program [96–98] and the Amish Eye Study [46].

The factors most valued by the Amish include faith, family, and community [36,58].
Their participation in research has partially been shaped by their altruistic nature and their
belief that, by participating in these studies, they are helping others [97]. To ensure that
our study design and enrollment practices were respectful of these values, we engaged in
door-to-door recruitment methods, performed study enrollments in the study participants’
homes, and used paper questionnaires to generate some of our study data. Our study
coordinators also built rapport with the GGLEAM study participants from engagement
in prior research studies and years of community involvement [26,46]. With the growing
field of genomics research in diverse and understudied populations, it is paramount that
researchers form longitudinal partnerships with study participants, especially those from
vulnerable populations [99,100].

5. Conclusions

Glaucoma significantly contributes to global cases of vision loss and blindness. While large
population-based cohorts have successfully identified numerous loci contributing to glau-
coma risk, most of the additive genetic variance for glaucoma is not attributable to known
loci. We started the GGLEAM study to study glaucoma risk in the Amish population by
ascertaining individuals with and without glaucoma from in and around Holmes County,
Ohio. To date, 81 Amish individuals have been enrolled in this study, and phenotypic data
has been generated for 62 of these individuals through health, lifestyle, environmental
exposure, and family history questionnaires as well as comprehensive eye exams. We de-
termined that these study participants are highly interrelated through a multigenerational
pedigree and plan to incorporate this kinship information into our future genetics studies.
Our hope is that the health, phenotypic, and genetic data we are gathering, together with
the extensive genealogical records for this special population, will be invaluable in expand-
ing our understanding of the genetic epidemiology of glaucoma.
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Supplementary Materials: The following are available online at https://www.mdpi.com/1660-460
1/18/4/1551/s1, Supplementary Item 1: GGLEAM study questionnaire for family history of eye
disease, Supplementary Item 2: Questionnaire for GGLEAM study participants’ physical activity and
environmental exposure, and Supplementary Item 3: Questionnaire for GGLEAM study participants’
health and activities.
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