Engineers develop prototype of electronic nose | News | Notre Dame News | University of Notre Dame Skip To Content Skip To Navigation Skip To Search University of Notre Dame Notre Dame News Experts ND in the News Subscribe About Us Home Contact Search Menu Home › News › Engineers develop prototype of electronic nose Engineers develop prototype of electronic nose Published: September 01, 2021 Author: Nina Welding Nosang Vincent Myung (left) with Ph.D. student Bingxin Yang There’s nothing like the smell of freshly brewed coffee in the morning. But how does one measure that smell? There’s no energy in a smell to help estimate how potent the coffee might be. Instead, it’s the gases emitted from brewed coffee that contribute to the invigorating scent. The human nose captures those gases in a way that Nosang Vincent Myung, the Bernard Keating Crawford Professor of Engineering at the University of Notre Dame, is working to duplicate in a device with sensors. He and his team have developed a prototype of an electronic nose, using nanoengineered materials to tune the sensitivity and selectivity to mimic the performance and capabilities of a human nose. That’s a tall order since the human nose with its approximately 400 scent receptors can distinguish millions of different smells. According to Myung, the chemical properties of gases affect the electrical properties of the sensing materials. By manipulating the size and shape of the nanoengineered materials, he and his team can make more precise sensors that function more efficiently and economically. “An electronic nose can be used for a variety of applications,” said Myung. “For example, we can detect air pollutants or greenhouse gases. But we can also use it to uncover drugs and bombs, sniff out cancer and bacterial infections, as well as identify natural gas leaks and assess food quality.” Myung was awarded a grant from the National Science Foundation’s Center for Bioanalytical Metrology for a Smart Process Analytical Technology System to monitor chemical/biochemical reactions in industrial and laboratory chemical processing applications in real time. He and his team also are designing a smart agricultural sensor system to monitor the nitrogen cycle in fields to help eliminate greenhouses gases while enhancing the yield of the produce being grown. In addition, they are developing a wearable smart sensor system for military personnel that can detect poisonous gases and other threats. “Developing better sensors is critical for a number of industries,” said Myung. “The future will be shaped by our ability to design and build smart, accurate and low-powered sensors that will help us better understand and interact with the world around us.” Originally published by the College of Engineering on Aug. 31.   Posted In: Diversity, Equity & Inclusion Research Home Experts ND in the News Subscribe About Us Related September 12, 2022 Can you tell me how to get to Sesame Street … in different countries? September 12, 2022 Hurricane Harvey’s hardest hit survivors five times as likely to experience anxiety from COVID-19 pandemic August 29, 2022 Gender-diverse teams produce more novel, higher-impact scientific discoveries, study shows August 23, 2022 In race against hurricane season, engineers launch survey to study incentives for climate-resilient homes August 16, 2022 Early childhood lead exposure, exacerbated by structural racism, results in lower reading scores For the Media Contact Office of Public Affairs and Communications Notre Dame News 500 Grace Hall Notre Dame, IN 46556 USA Facebook Twitter Instagram YouTube Pinterest © 2022 University of Notre Dame Search Mobile App News Events Visit Accessibility Facebook Twitter Instagram YouTube LinkedIn