Notre Dame astrophysicists publish new approach to cosmic lithium in the early universe | News | Notre Dame News | University of Notre Dame Skip To Content Skip To Navigation Skip To Search University of Notre Dame Notre Dame News Experts ND in the News Subscribe About Us Home Contact Search Menu Home › News › Notre Dame astrophysicists publish new approach to cosmic lithium in the early universe Notre Dame astrophysicists publish new approach to cosmic lithium in the early universe Published: September 07, 2012 Author: Marissa Gebhard and Gene Stowe One of the four European Southern Observatory’s Very Large Telescopes (VLT) with the Large and Small Magellanic Clouds in the background. Notre Dame astrophysicists used the VLT to observe gas in the Small Magellanic Cloud to constrain the cosmic abundance of lithium. Image: ESO/B. Tafreshi (twanight.org) J. Christopher Howk, Nicolas Lehner and Grant Mathews of the Center for Astrophysics at the University of Notre Dame published a paper this week in the journal Nature titled “Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud.” The astrophysicists have explored a discrepancy between the amount of lithium predicted by the standard models of elemental production during the Big Bang and the amount of lithium observed in the gas of the Small Magellanic Cloud, a galaxy near to our own. “The paper involves measuring the amount of lithium in the interstellar gas of a nearby galaxy, but it may have implications for fundamental physics, in that it could imply the presence of dark matter particles in the early universe that decay or annihilate one another,” Howk says. “This may be a probe of physics in the early universe that gives us a handle on new physics we don’t have another way to get a handle on right now.” The team, using observations from European Southern Observatory’s Very Large Telescope (VLT) in Chile, measured the amount of lithium in the interstellar gas of the Small Magellanic Cloud, which has far fewer star-produced heavy elements than the Milky Way. In addition to the production of elements by fusion in the core of stars, scientists believe conditions immediately after the Big Bang led to the formation of some elements, including a small amount of lithium. Stars in the Milky Way have about four times less lithium on the surface than expected by Big Bang predictions. Some scientists suggest that stellar activity might destroy lithium, or the element might sink from the surface through lighter hydrogen, but the remarkably consistent ratio from star to star is a challenge to those explanations. Observations of gas in the Small Magellanic Cloud revealed the amount of lithium that predictions say would have been produced at the Big Bang, but leave no room for subsequent production of the element. One explanation could be a novel kind of physics operating at the Big Bang that left less lithium than the Standard Model predicts. To pursue this possibility, the team will conduct three nights of observations on the VLT in November. They will look for the lithium isotope 7Li in the Large Magellanic Cloud and 6Li in both the Large Magellanic Cloud and the Small Magellanic Cloud. The standard model predicts that no 6Li was created at the Big Bang. Brian Fields of the University of Illinois at Urbana-Champaign co-authored the work. Contact: Chris Howk, 574-631-8594, jhowk@nd.edu Posted In: Research Home Experts ND in the News Subscribe About Us Related October 05, 2022 Astrophysicists find evidence for the presence of the first stars October 04, 2022 NIH awards $4 million grant to psychologists researching suicide prevention September 29, 2022 Notre Dame, Ukrainian Catholic University launch three new research grants September 27, 2022 Notre Dame, Trinity College Dublin engineers join to advance novel treatment for cystic fibrosis September 22, 2022 Climate-prepared countries are losing ground, latest ND-GAIN index shows For the Media Contact Office of Public Affairs and Communications Notre Dame News 500 Grace Hall Notre Dame, IN 46556 USA Facebook Twitter Instagram YouTube Pinterest © 2022 University of Notre Dame Search Mobile App News Events Visit Accessibility Facebook Twitter Instagram YouTube LinkedIn