Scientists tackle potential drug resistance by using new single-cell genetic method | News | Notre Dame News | University of Notre Dame Skip To Content Skip To Navigation Skip To Search University of Notre Dame Notre Dame News Experts ND in the News Subscribe About Us Home Contact Search Menu Home › News › Scientists tackle potential drug resistance by using new single-cell genetic method Scientists tackle potential drug resistance by using new single-cell genetic method Published: September 25, 2019 Author: Deanna Csomo McCool Research. Photo by Matt Cashore/University of Notre Dame. Using a new technique that can identify genetic profiles of individual cells, University of Notre Dame researchers modeled a breast cancer tumor’s potential resistance to a drug, and then identified a drug combination that reversed that resistance. Siyuan Zhang, the Dee Associate Professor of Biological Sciences at Notre Dame, and his team used a new profiling process to make the discovery, published in Nature Communications. “The new technology allows us to do sequencing on each individual cell,” Zhang said, adding that his lab worked with Notre Dame’s Genomics and Bioinformatics Core Facility to apply the new technology, called high-throughput single-cell profiling, on campus. Until recently, finding patterns of gene expression for cancer tissue has been performed using whole tumor tissue, a process called bulk sequencing. Unfortunately, cancer cells are embedded in a matrix of other cells, making it difficult to distinguish the true signatures of individual cells. The new single-cell profiling technique makes the task of discerning the nature of each cell possible. In this study, researchers observed how a particular new drug works for shrinking tumors in an aggressive type of cancer, HER2-positive breast cancer. The drug, called a CDK 4/6 inhibitor — used to block a specific type of enzyme — works rapidly. But most drugs start out working well, before the tumor eventually changes and becomes resistant to the treatment. Researchers then look at the resistant tumors and start to develop new drugs to overcome resistance, but by then it’s too late. “By the time we find a new drug, the tumor has shifted into something different,” said Zhang. Siyuan Zhang Zhang decided to investigate predicting the potential for drug resistance. Running tests in tandem with the clinical trial for the CDK 4/6 drug, and using the single-cell profiling technology, his team discovered a type of tumor-infiltrating immune-suppressive cells that led to resistance. The team then added another already-FDA-approved drug to target the immune-suppressive cells. The combination reversed the resistance. “The new combination of drugs shows that the resistant tumor can be treated, and can maintain and control the tumor size for a pretty long period of time,” Zhang said. Given the effectiveness of the additional drug, clinicians could begin the combination therapy even before resistance occurs, Zhang noted. Because the drug is already FDA-approved, clinicians may choose to try the protocol now. Single-cell profiling could lead to additional discoveries, said Michael Pfrender, director of the Genomics and Bioinformatics Core Facility and professor in the Department of Biological Sciences. “The applications of single-cell approaches to human disease and development are profound,” he said. “This technology is rapidly becoming an essential feature in the biomedical research tool kit.” In addition to Zhang, other researchers include Qingfei Wang, Ian H. Guldner, Samantha M. Golomb, Longhua Sun, Jack A. Harris and Xin Lu, all of Notre Dame and the Mike and Josie Harper Cancer Research Institute. Lu and Zhang also are affiliated with the Indiana University Melvin and Bren Simon Cancer Center. The study was funded by the National Institutes of Health, Notre Dame’s Boler-Parseghian Center for Rare and Neglected Diseases Catalyst Award and a grant from the Notre Dame Advanced Diagnostics and Therapeutics initiative. Contact: Jessica Sieff, assistant director of media relations, 574-631-3933, jsieff@nd.edu Posted In: Research Home Experts ND in the News Subscribe About Us Related October 05, 2022 Astrophysicists find evidence for the presence of the first stars October 04, 2022 NIH awards $4 million grant to psychologists researching suicide prevention September 29, 2022 Notre Dame, Ukrainian Catholic University launch three new research grants September 27, 2022 Notre Dame, Trinity College Dublin engineers join to advance novel treatment for cystic fibrosis September 22, 2022 Climate-prepared countries are losing ground, latest ND-GAIN index shows For the Media Contact Office of Public Affairs and Communications Notre Dame News 500 Grace Hall Notre Dame, IN 46556 USA Facebook Twitter Instagram YouTube Pinterest © 2022 University of Notre Dame Search Mobile App News Events Visit Accessibility Facebook Twitter Instagram YouTube LinkedIn